Transfer Learning-Based State of Charge and State of Health Estimation for Li-Ion Batteries: A Review

计算机科学 电荷(物理) 离子 荷电状态 电池(电) 健康状况 国家(计算机科学) 材料科学 功率(物理) 算法 热力学 物理 量子力学
作者
Liyuan Shen,Jingjing Li,Lichao Meng,Lei Zhu,Heng Tao Shen
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (1): 1465-1481 被引量:28
标识
DOI:10.1109/tte.2023.3293551
摘要

State of charge (SOC) and state of health (SOH) estimation play a vital role in battery management systems (BMSs). Accurate and robust state estimation can prevent Li-ion batteries (LIBs) from overcharging and undercharging. In recent years, many methods have been utilized for accurate state estimation. Among these methods, data-driven methods show overwhelming effectiveness. However, data-driven methods are also facing several severe challenges, such as data distribution discrepancy and data insufficiency. To tackle these problems, transfer learning (TL) has been leveraged in the community recently. TL-based methods are promising since they can be generalized to various working conditions and are able to alleviate the data distribution discrepancy issue. However, TL was studied in the machine learning community and it is not familiar to the power electronics researchers. In this article, we provide a brief review to mitigate the domain gap. Specifically, recent TL-based state estimation methods are reviewed and divided into three categories: fine-tuning methods, metric-based methods, and adversarial adaptation methods. The model structures, theories and key techniques of these methods are discussed in detail. Moreover, it is noticed that there are no uniform evaluation criteria in the previous literature. By analyzing the required properties of estimation models, new standards for performance evaluation criteria, test datasets, and experiment settings are discussed. Extensive experiments are performed according to the newly proposed standards. At last, we propose several possible directions for future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨宿完成签到,获得积分10
刚刚
yangz发布了新的文献求助10
刚刚
2秒前
3秒前
热心的棒棒糖完成签到 ,获得积分10
3秒前
打打应助ciao采纳,获得20
5秒前
ding应助苹果犀牛采纳,获得10
6秒前
7秒前
xh发布了新的文献求助10
7秒前
传统的松鼠完成签到 ,获得积分10
7秒前
10秒前
10秒前
小党完成签到,获得积分10
10秒前
11秒前
qwertyuiop发布了新的文献求助10
11秒前
11秒前
112233完成签到,获得积分10
11秒前
12秒前
14秒前
Hello应助阿橘采纳,获得10
14秒前
kyJYbs发布了新的文献求助10
14秒前
香蕉招牌发布了新的文献求助10
14秒前
112233发布了新的文献求助10
14秒前
sijia_yang给sijia_yang的求助进行了留言
15秒前
科研通AI5应助吴wish采纳,获得20
15秒前
科研通AI5应助潜龙采纳,获得30
15秒前
yu发布了新的文献求助10
15秒前
云雀关注了科研通微信公众号
15秒前
采影子发布了新的文献求助10
15秒前
sci完成签到,获得积分10
16秒前
apoptoxin4896发布了新的文献求助10
16秒前
ED应助单南柯采纳,获得10
16秒前
hyx9504发布了新的文献求助30
16秒前
16秒前
稳稳稳发布了新的文献求助10
17秒前
小鲨鱼完成签到,获得积分10
17秒前
17秒前
绿色香蕉跳跳糖完成签到 ,获得积分10
18秒前
席潮完成签到,获得积分10
19秒前
Hey发布了新的文献求助10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811218
求助须知:如何正确求助?哪些是违规求助? 3355594
关于积分的说明 10376790
捐赠科研通 3072455
什么是DOI,文献DOI怎么找? 1687496
邀请新用户注册赠送积分活动 811671
科研通“疑难数据库(出版商)”最低求助积分说明 766728