Dual Attention Graph Convolutional Network for Relation Extraction

计算机科学 编码 依赖关系(UML) 依赖关系图 人工智能 判决 合并(版本控制) 图形 自然语言处理 理论计算机科学 情报检索 生物化学 化学 基因
作者
Donghao Zhang,Zhenyu Liu,Weiqiang Jia,Fei Wu,Hui Liu,Jianrong Tan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tkde.2023.3289879
摘要

Dependency-based models are widely used to extract semantic relations in text. Most existing dependency-based models establish stacked structures to merge contextual and dependency information, which encode the contextual information first and then encode the dependency information. However, this unidirectional information flow weakens the representation of words in the sentence, which further restricts the performance of existing models. To establish bidirectional information flow, a dual attention graph convolutional network (DAGCN) with a parallel structure is proposed. Most importantly, DAGCN can build multi-turn interactions between contextual and dependency information to imitate the multi-turn looking-back actions of human beings. In addition, multi-layer adjacency matrix-aware multi-head attention (AMAtt), including context-to-dependency attention and dependency-to-context attention, is carefully designed as a merge mechanism in the parallel structure to preserve the structural information of sentences and dependency trees during interactions. Furthermore, DAGCN is evaluated on the popular PubMed dataset, TACRED dataset and SemEval 2010 Task 8 dataset to demonstrate its validity. Experimental results show that our model outperforms the existing dependency-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
小嘎完成签到 ,获得积分10
4秒前
三三完成签到,获得积分10
4秒前
海的呼唤完成签到,获得积分10
4秒前
ChenXY发布了新的文献求助10
6秒前
失眠的剑完成签到,获得积分10
6秒前
舒适惜寒发布了新的文献求助10
7秒前
yang完成签到,获得积分10
9秒前
小蘑菇应助木雷采纳,获得10
10秒前
gg完成签到,获得积分20
10秒前
动漫大师发布了新的文献求助50
11秒前
顺利念双发布了新的文献求助10
11秒前
脑洞疼应助大师采纳,获得10
11秒前
jqdsg完成签到,获得积分10
12秒前
Orange应助Yumeng采纳,获得10
12秒前
13秒前
GaPb氘壬完成签到,获得积分10
14秒前
Ni完成签到,获得积分10
14秒前
ChenXY完成签到,获得积分10
15秒前
小蘑菇应助橙果果采纳,获得10
15秒前
17秒前
xiixix发布了新的文献求助10
19秒前
19秒前
junzilan完成签到,获得积分10
20秒前
bc应助科研通管家采纳,获得20
22秒前
22秒前
22秒前
今后应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
爆米花应助科研通管家采纳,获得30
22秒前
22秒前
英姑应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
ZhouYW应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102