Differentiation of hypervirulent and classicalKlebsiella pneumoniaewith acquired drug resistance

肺炎克雷伯菌 多重耐药 病毒学 抗药性 生物 微生物学 大肠杆菌 基因 遗传学
作者
Thomas A. Russo,Cassandra L. Alvarado,Connor J. Davies,Zachary J. Drayer,Ulrike MacDonald,Alan D. Hutson,Ting L. Luo,Melissa J. Martin,Brendan W. Corey,Kara A. Moser,J. Kamile Rasheed,Alison Laufer Halpin,Patrick McGann,François Lebreton
标识
DOI:10.1101/2023.06.30.547231
摘要

Abstract Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combination of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g. siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Further, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combination of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N=16) or cKp (N=33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid’s Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥ 4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49) respectively. These findings can be used to inform the identification of hvKp. Importance Hypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all 5 of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥ 4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which in turn would assist in optimizing patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
18969431868完成签到,获得积分10
2秒前
cz完成签到 ,获得积分10
3秒前
4秒前
纯真冰露完成签到,获得积分10
6秒前
爱吃橙子的苹果水完成签到 ,获得积分10
8秒前
西方印迹大王完成签到 ,获得积分10
8秒前
柚仝发布了新的文献求助10
9秒前
9秒前
英俊的铭应助caicai采纳,获得10
9秒前
10秒前
空白发布了新的文献求助10
15秒前
15秒前
完美世界应助花h采纳,获得10
20秒前
123发布了新的文献求助30
21秒前
24秒前
meimei发布了新的文献求助10
28秒前
落寞若你的完成签到 ,获得积分20
28秒前
深情安青应助AnnChen采纳,获得30
30秒前
布饭a完成签到 ,获得积分10
31秒前
32秒前
且放青山远完成签到,获得积分10
33秒前
35秒前
36秒前
花h发布了新的文献求助10
38秒前
123完成签到,获得积分10
39秒前
40秒前
越遇完成签到 ,获得积分10
40秒前
AnnChen发布了新的文献求助30
42秒前
彩色的断秋完成签到,获得积分10
43秒前
43秒前
矛尾复虾虎鱼完成签到,获得积分10
44秒前
茉莉花茶完成签到 ,获得积分10
46秒前
46秒前
AnnChen完成签到,获得积分10
47秒前
49秒前
我是老大应助打地鼠工人采纳,获得10
50秒前
52秒前
54秒前
Orange应助科研通管家采纳,获得10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878