A novel hybrid model based on grey wolf optimizer and group method of data handling for the prediction of monthly mean significant wave heights

均方误差 平均绝对百分比误差 统计 人工神经网络 自适应神经模糊推理系统 分组数据处理方法 数学 决定系数 相关系数 软计算 人工智能 计算机科学 机器学习 模糊逻辑 模糊控制系统
作者
Jingxuan Xie,Xin Xue
出处
期刊:Ocean Engineering [Elsevier]
卷期号:284: 115274-115274 被引量:2
标识
DOI:10.1016/j.oceaneng.2023.115274
摘要

Significant wave height prediction is challenging owing to the nonlinear and nonsmooth attributes of wave heights. This study presents a hybrid model coupling group method of data handling (GMDH) with grey wolf optimizer (GWO) for the prediction of significant wave heights. The datasets were assembled from three different observations, Stations 41001, 41002 and 44004 in the Atlantic; the datasets of Stations 41001 and 41002 were used for training, and those of Station 44004 were used for testing. The performance of the GWO-GMDH model was compared with four artificial intelligence models, the GMDH, gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS) and back propagation (BP) neural network models, and one empirical equation derived by Buckingham π-theorem. Both regression plots and statistical indices (e.g., correlation coefficient (R), root mean squared error (RMSE), mean squared error (MSE) and mean absolute percentage error (MAPE)) were adopted to evaluate the performance of the hybrid GWO-GMDH model. The MSE, RMSE, MAPE and R values were 0.041, 0.202, 7.353% and 0.953, respectively, for the training datasets and 0.031, 0.175, 7.598% and 0.941, respectively, for the testing datasets. Compared with the single GMDH model, the statistical indices of the training datasets of the hybrid GWO-GMDH model were almost the same; however, the MSE, RMSE and MAE values decreased by 24.39%, 13.37% and 7.95%, respectively, and the R value increased by 2.28% in the testing datasets. Compared with the GEP, BP, and ANFIS models and empirical equation models, the GWO-GMDH model also shows high accuracy and robustness, especially compared with empirical formulations. In addition, a graphical user interface (GUI) was developed to facilitate the application of practical engineering use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
收集快乐完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
坚强莺完成签到,获得积分10
刚刚
AdventureChen发布了新的文献求助10
刚刚
Eli应助Zzj采纳,获得10
刚刚
1秒前
1秒前
zhabgyyy完成签到,获得积分10
1秒前
乔沃维奇发布了新的文献求助10
2秒前
2秒前
科研通AI6应助tong采纳,获得10
3秒前
傻瓜发布了新的文献求助10
4秒前
4秒前
4秒前
思源应助zzzcxxx采纳,获得10
5秒前
cyj发布了新的文献求助10
5秒前
5秒前
liuguohua126发布了新的文献求助10
5秒前
秦桂敏完成签到 ,获得积分10
6秒前
6秒前
zzzzip应助yuantec采纳,获得10
6秒前
在水一方应助么嗷苗采纳,获得10
6秒前
冷傲翠绿发布了新的文献求助10
7秒前
邵云完成签到,获得积分10
7秒前
7秒前
7秒前
晴天发布了新的文献求助10
8秒前
8秒前
8秒前
韩寒完成签到 ,获得积分10
9秒前
QIQ发布了新的文献求助10
9秒前
小叶子完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
Zx_1993应助科研通管家采纳,获得10
10秒前
腼腆的鸵鸟完成签到,获得积分10
10秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
边边玥铭发布了新的文献求助10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066