Digital Twins: State of the Art Theory and Practice, Challenges, and Open Research Questions

实施 计算机科学 领域(数学) 数据科学 大数据 开放式研究 领域(数学分析) 国家(计算机科学) 互联网 万维网 软件工程 数据挖掘 算法 数学 数学分析 纯数学
作者
Angira Sharma,Edward Elson Kosasih,Jie Zhang,Alexandra Brintrup,Anisoara Calinescu
出处
期刊:Cornell University - arXiv 被引量:13
标识
DOI:10.48550/arxiv.2011.02833
摘要

Digital Twin was introduced over a decade ago, as an innovative all-encompassing tool, with perceived benefits including real-time monitoring, simulation and forecasting. However, the theoretical framework and practical implementations of digital twins (DT) are still far from this vision. Although successful implementations exist, sufficient implementation details are not publicly available, therefore it is difficult to assess their effectiveness, draw comparisons and jointly advance the DT methodology. This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin. Advancements in machine learning, internet of things and big data have contributed hugely to the improvements in DT with regards to its real-time monitoring and forecasting properties. Despite this progress and individual company-based efforts, certain research gaps exist in the field, which have caused delay in the widespread adoption of this concept. We reviewed relevant works and identified that the major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics. We define the necessary components of a digital twin required for a universal reference framework, which also validate its uniqueness as a concept compared to similar concepts like simulation, autonomous systems, etc. This work further assesses the digital twin applications in different domains and the current state of machine learning and big data in it. It thus answers and identifies novel research questions, both of which will help to better understand and advance the theory and practice of digital twins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brady发布了新的文献求助10
刚刚
刚子完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
yuncong323完成签到,获得积分10
1秒前
抠脚大汉完成签到,获得积分10
1秒前
1秒前
1秒前
噼里啪啦发布了新的文献求助30
2秒前
lsn完成签到,获得积分10
2秒前
风汐5423完成签到,获得积分10
2秒前
李健的粉丝团团长应助Long采纳,获得10
2秒前
聪明贞完成签到,获得积分10
3秒前
acid完成签到,获得积分10
3秒前
gsloan发布了新的文献求助10
3秒前
老迟到的友菱完成签到,获得积分10
3秒前
搜集达人应助研友_nxV0x8采纳,获得10
3秒前
唐褚完成签到,获得积分10
3秒前
清爽雪碧完成签到 ,获得积分10
3秒前
董科研严完成签到,获得积分20
4秒前
JIHAHS发布了新的文献求助10
4秒前
迷你的向日葵完成签到,获得积分20
4秒前
changyi完成签到,获得积分10
4秒前
gu完成签到,获得积分10
4秒前
zzz完成签到,获得积分20
4秒前
CH发布了新的文献求助10
4秒前
Raydiaz完成签到,获得积分10
5秒前
5秒前
一个兴趣使然的人完成签到,获得积分10
5秒前
yznfly应助lasfjas采纳,获得40
6秒前
小木虫完成签到,获得积分10
6秒前
Jenny发布了新的文献求助20
7秒前
111完成签到,获得积分10
8秒前
大方念云完成签到,获得积分10
8秒前
淡定的书南完成签到,获得积分10
8秒前
科研通AI2S应助鱼儿采纳,获得10
9秒前
椰子狗完成签到,获得积分10
9秒前
凶狗睡大石完成签到,获得积分10
9秒前
一一完成签到 ,获得积分10
10秒前
10秒前
NatureLee完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4890557
求助须知:如何正确求助?哪些是违规求助? 4174147
关于积分的说明 12954482
捐赠科研通 3936006
什么是DOI,文献DOI怎么找? 2159565
邀请新用户注册赠送积分活动 1177896
关于科研通互助平台的介绍 1083319