Crisscross-Global Vision Transformers Model for Very High Resolution Aerial Image Semantic Segmentation

计算机科学 人工智能 分割 高分辨率 图像分割 计算机视觉 遥感 航空影像 地质学 图像(数学)
作者
Guohui Deng,Zhaocong Wu,Miaozhong Xu,Chengjun Wang,Zhiye Wang,Zhongyuan Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2023.3276172
摘要

Semantic segmentation is a key means for understanding very-high resolution (VHR) aerial imagery. With the explosive development of deep learning, deep learning methods are being applied to the segmentation of VHR images, with convolutional neural networks (CNNs) as the basic framework. However, owing to the highly complex details present in VHR images and the high spatial dependence of geographical objects, CNN-based methods are inadequate. This is because the inherent locality of CNNs limits the size of the receptive field, thus limiting the ability to obtain long-range context information. To solve this problem, in this paper, we propose a transformer-based novel deep learning model called crisscross-global vision transformers (CGVT). CGVT exploits the transformer's inherent ability to obtain long-range context information to solve the restricted receptive field problem. Specifically, we redesign the self-attention mechanism in the transformer and call it crisscross-global attention. It consists of two parts: crisscross transformer encoder block (CC-TEB) and global squeeze transformer encoder block (GS-TEB). CC-TEB overcomes the limitation of the traditional self-attention design (specifically, difficulty applying it to VHR aerial image segmentation) and further increases the local feature representation ability of the model. GS-TEB increases the global feature representation ability of the model. The results of experiments conducted on the popular ISPRS Vaihingen, IEEE GRSS Data Fusion Contest Zeebrugge, and LoveDA Semantic Segmentation Challenge datasets verify the effectiveness and superiority of our proposed method. Specifically, it achieved state-of-the-art performance on both Zeebrugge and LoveDA datasets, and is currently ranked second in Vaihingen dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利毕业mpa完成签到,获得积分10
3秒前
香蕉冬云完成签到 ,获得积分10
3秒前
vikey完成签到 ,获得积分10
4秒前
maxthon完成签到,获得积分10
4秒前
细心笑卉完成签到 ,获得积分10
5秒前
RATHER完成签到,获得积分10
5秒前
LLL完成签到 ,获得积分10
8秒前
李伟完成签到,获得积分10
9秒前
11秒前
MYMELODY完成签到,获得积分10
11秒前
闲鱼嫌鱼咸完成签到,获得积分10
14秒前
djf103发布了新的文献求助10
16秒前
瘦瘦冰枫发布了新的文献求助10
18秒前
Benjamin完成签到 ,获得积分10
22秒前
yhz完成签到,获得积分10
25秒前
Yy完成签到 ,获得积分10
26秒前
29秒前
29秒前
土豪的土豆完成签到 ,获得积分10
30秒前
李健应助可可采纳,获得10
32秒前
32秒前
lemongulf完成签到 ,获得积分10
35秒前
ikun0000完成签到,获得积分10
35秒前
qqqxl完成签到,获得积分10
36秒前
瘦瘦冰枫完成签到,获得积分10
37秒前
无敌大洲洲完成签到,获得积分10
40秒前
二巨头完成签到,获得积分10
40秒前
舒心豪英完成签到 ,获得积分10
40秒前
YeeBohr完成签到,获得积分20
41秒前
故酒应助ncuwzq采纳,获得10
45秒前
隐形曼青应助lizhiqian2024采纳,获得10
49秒前
ergatoid完成签到,获得积分10
52秒前
genomed举报ding求助涉嫌违规
53秒前
派大星完成签到,获得积分10
53秒前
56秒前
Zeeki完成签到 ,获得积分10
57秒前
风中的冰蓝完成签到,获得积分10
57秒前
59秒前
甜甜的难敌完成签到,获得积分10
1分钟前
夜白应助科研通管家采纳,获得20
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726