TPMv2: An end-to-end tomato pose method based on 3D key points detection

最小边界框 点云 钥匙(锁) 人工智能 计算机科学 计算机视觉 管道(软件) 点(几何) 姿势 终点 跳跃式监视 图像(数学) 实时计算 数学 几何学 计算机安全 程序设计语言
作者
Fan Zhang,Jin Gao,Chaoyu Song,Hang Zhou,Kunlin Zou,Jin-yi XIE,Ting Yuan,Junxiong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:210: 107878-107878 被引量:1
标识
DOI:10.1016/j.compag.2023.107878
摘要

The automatic harvesting of tomatoes has been achieved for many years in the laboratory. The new research topic is harvesting the tomato more flexibly and nondestructively at any tomato bunch pose according to the agronomic demands. Although the tomato pose can be predicted by keypoints detection, the poor data quality of commercial RGBD cameras, occlusion between plant organs, various tomato poses, and unstructured working environments pose some challenges to the tomato bunch pose detection. Therefore, our research proposed an improved version of the Tomato Pose Method (TPM), namely TPMv2, which is a two-stage end-to-end multi-task network. This network provides comprehensive information on the tomato bunch, including the positions and poses of the stem, peduncle, and fruits, by predicting the two-dimensional bounding box (2D BBox), three-dimensional bounding box (3D BBox), two-dimensional key point (2D Kpt), and three-dimensional key point (3D Kpt). Aiming at the problems of occlusion and poor-quality point cloud, this paper specially designs a key point network (KPN) for tomatoes, where a keypoints processing pipeline was innovatively proposed, improving the accuracy of key point positioning and reducing abnormal prediction effectively. TPMv2 makes it possible to detect tomato bunch pose precisely with an economical camera, avoiding dangerous situations caused by abnormal prediction. The precision of 2D BBox and 3D BBox reached 0.9372 and 0.8700, and the Percentage of correct Keypoints (PCK) of 2D Kpt and 3D Kpt reached 0.8882 and 0.7836. About 78.36 % of 3D Kpts' positioning errors are less than 20 mm, sufficient to describe a correct pose trend based on the 3D Kpt, benefiting the manipulator to plan a more reasonable trajectory for non-destructive harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丢硬币的小孩完成签到,获得积分10
1秒前
luisa完成签到,获得积分10
3秒前
5秒前
Meyako完成签到 ,获得积分10
6秒前
shane完成签到,获得积分10
6秒前
科研通AI2S应助西南楚留香采纳,获得10
7秒前
李健应助luisa采纳,获得10
8秒前
望除完成签到,获得积分10
9秒前
lll发布了新的文献求助10
10秒前
Mak发布了新的文献求助10
11秒前
八百标兵完成签到,获得积分10
12秒前
拼搏的飞薇完成签到,获得积分10
14秒前
11111111111完成签到,获得积分10
15秒前
zambajia完成签到 ,获得积分10
15秒前
orixero应助shane采纳,获得10
18秒前
研友_VZG7GZ应助万灵竹采纳,获得10
19秒前
20秒前
22秒前
Mak完成签到,获得积分20
22秒前
谦让寻凝完成签到 ,获得积分10
24秒前
柚子完成签到,获得积分10
24秒前
LGJ完成签到,获得积分10
25秒前
兴奋鼠标完成签到 ,获得积分10
26秒前
26秒前
白衣修身发布了新的文献求助10
29秒前
29秒前
星星轨迹完成签到,获得积分10
29秒前
tong发布了新的文献求助10
29秒前
星辰大海应助chenlina采纳,获得10
29秒前
迷路的沛芹完成签到 ,获得积分10
30秒前
30秒前
AI完成签到 ,获得积分10
31秒前
och3完成签到,获得积分10
31秒前
MYMELODY完成签到,获得积分10
31秒前
小二郎应助胖飞飞采纳,获得10
32秒前
Vicou2025完成签到 ,获得积分10
33秒前
ahui完成签到 ,获得积分10
34秒前
万灵竹发布了新的文献求助10
35秒前
Wsyyy完成签到 ,获得积分10
35秒前
37秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845724
求助须知:如何正确求助?哪些是违规求助? 3387967
关于积分的说明 10551319
捐赠科研通 3108649
什么是DOI,文献DOI怎么找? 1712973
邀请新用户注册赠送积分活动 824550
科研通“疑难数据库(出版商)”最低求助积分说明 774891