Prediction of Anemia From Cerebral Venous Sinus Attenuation on Deep-Learning Reconstructed Brain Computed Tomography Images

医学 核医学 窦(植物学) 置信区间 断层摄影术 秩相关 相关系数 放射科 内科学 数学 植物 生物 统计
作者
Ryo Yamakuni,Hirofumi Sekino,Masaki Saito,Takeyasu Kakamu,Katsuhiro Takahashi,Junko Hara,Hiroki Suenaga,Shiro Ishii,Kenji Fukushima,Hiroshi Ito
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (5): 796-805 被引量:5
标识
DOI:10.1097/rct.0000000000001479
摘要

The aim of the study is to evaluate whether the prediction of anemia is possible using quantitative analyses of unenhanced cranial computed tomography (CT) with deep learning reconstruction (DLR) compared with conventional methods.This cross-sectional retrospective study included 116 participants (76 males; mean age, 66.7) who had hemoglobin (Hb) levels obtained within 24 hours of unenhanced cranial CT, which included 2 reconstruction methods: DLR and hybrid iterative reconstruction. Regions of interest were the confluence of sinuses (CoS) and the right and left transverse sinuses. In addition, edge rise distance of cerebrospinal fluid and venous was measured.Spearman rank correlation coefficient demonstrated a positive association between Hb levels and sinus attenuation values. Among these, the CoS in DLR had the best correlation ( r = 0.703, P < 0.001). For the prediction of anemia (Hb < 11 g/dL), the area under the curve of CoS in DLR (area under the curve = 0.874; 95% confidence interval, 0.798-0.949; P < 0.001) was the highest; however, there were no significant differences among reconstruction method and sinus. The attenuation values of DLR were significantly higher than those of hybrid iterative reconstruction ( P < 0.001, paired t test), and the differences between the 2 methods were 4.1 (standard deviation [SD], 1.6) for CoS, 5.2 (SD, 2.2) for right transverse sinuses, and 5.8 (SD, 2.4) for left transverse sinuses. The signal-to-noise ratio ( P < 0.001, paired t test) and edge rise distance ( P < 0.001, Wilcoxon signed rank test) of DLR was significantly higher.Higher CT attenuation values should be considered for predicting anemia based on brain DLR images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助百宝采纳,获得20
刚刚
ccm应助缥缈的凝丹采纳,获得10
刚刚
科研通AI2S应助缥缈的凝丹采纳,获得10
刚刚
子平完成签到 ,获得积分0
1秒前
1秒前
shan发布了新的文献求助10
2秒前
灵巧碧琴应助追寻的涵菱采纳,获得10
3秒前
鸣笛应助123333采纳,获得30
3秒前
Jupiter 1234发布了新的文献求助10
4秒前
猪猪hero发布了新的文献求助10
5秒前
6秒前
8秒前
包容仙人掌完成签到,获得积分10
9秒前
10秒前
10秒前
mao发布了新的文献求助10
10秒前
路路驳回了蓝天应助
11秒前
12秒前
13秒前
13秒前
缓慢逍遥完成签到 ,获得积分10
15秒前
卑微科研发布了新的文献求助10
15秒前
张张发布了新的文献求助10
16秒前
善学以致用应助aa采纳,获得10
17秒前
周周发布了新的文献求助10
19秒前
20秒前
朴素的醉蓝完成签到,获得积分10
20秒前
优美飞薇完成签到,获得积分10
20秒前
所所应助卑微科研采纳,获得10
21秒前
闪闪凝冬发布了新的文献求助10
22秒前
科研白菜发布了新的文献求助10
23秒前
24秒前
Fiona发布了新的文献求助10
24秒前
冉柒完成签到,获得积分10
25秒前
科研通AI5应助唠叨的似狮采纳,获得10
26秒前
26秒前
宝贝发布了新的文献求助10
26秒前
追寻的涵菱完成签到,获得积分10
27秒前
蓝天应助Hysen_L采纳,获得10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4451520
求助须知:如何正确求助?哪些是违规求助? 3918918
关于积分的说明 12163768
捐赠科研通 3568989
什么是DOI,文献DOI怎么找? 1959880
邀请新用户注册赠送积分活动 999269
科研通“疑难数据库(出版商)”最低求助积分说明 894209