Rapid Joule Heating Synthesis of Oxide-Socketed High-Entropy Alloy Nanoparticles as CO2 Conversion Catalysts

材料科学 氧化物 纳米颗粒 催化作用 化学工程 合金 焦耳加热 纳米技术 复合材料 化学 冶金 生物化学 工程类
作者
Jaewan Ahn,Seyeon Park,DongHwan Oh,Yunsung Lim,Jong Seok Nam,Jihan Kim,WooChul Jung,Il‐Doo Kim
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (13): 12188-12199 被引量:57
标识
DOI:10.1021/acsnano.3c00443
摘要

The unorthodox surface chemistry of high-entropy alloy nanoparticles (HEA-NPs), with numerous interelemental synergies, helps catalyze a variety of essential chemical processes, such as the conversion of CO2 to CO, as a sustainable path to environmental remediation. However, the risk of agglomeration and phase separation in HEA-NPs during high-temperature operations are lasting issues that impede their practical viability. Herein, we present HEA-NP catalysts that are tightly sunk in an oxide overlayer for promoting the catalytic conversion of CO2 with exceptional stability and performance. We demonstrated the controlled formation of conformal oxide overlayers on carbon nanofiber surfaces via a simple sol-gel method, which facilitated a large uptake of metal precursor ions and helped to decrease the reaction temperature required for nanoparticle formation. During the rapid thermal shock synthesis process, the oxide overlayer would also impede nanoparticle growth, resulting in uniformly distributed small HEA-NPs (2.37 ± 0.78 nm). Moreover, these HEA-NPs were firmly socketed in the reducible oxide overlayer, enabling an ultrastable catalytic performance involving >50% CO2 conversion with >97% selectivity to CO for >300 h without extensive agglomeration. Altogether, we establish the rational design principles for the thermal shock synthesis of high-entropy alloy nanoparticles and offer a helpful mechanistic perspective on how the oxide overlayer impacts the nanoparticle synthesis behavior, providing a general platform for the designed synthesis of ultrastable and high-performance catalysts that could be utilized for various industrially and environmentally relevant chemical processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
shi0331完成签到,获得积分10
2秒前
田田发布了新的文献求助10
2秒前
文静的白羊完成签到,获得积分10
3秒前
孙晓燕完成签到 ,获得积分10
3秒前
石武完成签到,获得积分10
3秒前
传统的大白完成签到,获得积分10
3秒前
SciGPT应助拼搏惜金采纳,获得10
4秒前
司徒不二完成签到,获得积分0
4秒前
爱好钢笔完成签到 ,获得积分10
4秒前
任性柜子完成签到 ,获得积分10
4秒前
火山驾到完成签到,获得积分10
4秒前
小黑莓完成签到,获得积分10
5秒前
瘦瘦的草丛完成签到,获得积分10
5秒前
leeyc发布了新的文献求助10
5秒前
laoli2022完成签到,获得积分10
5秒前
Criminology34应助张淼采纳,获得10
6秒前
6秒前
猫南北完成签到,获得积分10
6秒前
潦草又潦倒完成签到,获得积分10
6秒前
6秒前
7秒前
高瑞完成签到 ,获得积分10
7秒前
8秒前
8秒前
hyishu完成签到,获得积分10
8秒前
Java完成签到,获得积分10
9秒前
Perrylin718完成签到,获得积分10
9秒前
希望天下0贩的0应助JIE采纳,获得10
9秒前
9秒前
笙鱼片完成签到,获得积分10
10秒前
zszzzsss完成签到,获得积分10
10秒前
yi完成签到,获得积分10
10秒前
htt发布了新的文献求助10
11秒前
znn完成签到,获得积分10
11秒前
小猴发布了新的文献求助10
12秒前
CipherSage应助scufgy采纳,获得10
12秒前
12秒前
周维完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465