An interpretable XGBoost‐based approach for Arctic navigation risk assessment

风险评估 北极的 计算机科学 地理 人工智能 环境科学 计算机安全 地质学 海洋学
作者
Shuaiyu Yao,Qinhao Wu,Qi Kang,Yu‐Wang Chen,Lu Yi
出处
期刊:Risk Analysis [Wiley]
卷期号:44 (2): 459-476
标识
DOI:10.1111/risa.14175
摘要

The Northern Sea Route (NSR) makes travel between Europe and Asia shorter and quicker than a southern transit via the Strait of Malacca and Suez Canal. It provides greater access to Arctic resources such as oil and gas. As global warming accelerates, melting Arctic ice caps are likely to increase traffic in the NSR and enhance its commercial viability. Due to the harsh Arctic environment imposing threats to the safety of ship navigation, it is necessary to assess Arctic navigation risk to maintain shipping safety. Currently, most studies are focused on the conventional assessment of the risk, which lacks the validation based on actual data. In this study, actual data about Arctic navigation environment and related expert judgments were used to generate a structured data set. Based on the structured data set, extreme gradient boosting (XGBoost) and alternative methods were used to establish models for the assessment of Arctic navigation risk, which were validated using cross-validation. The results show that compared with alternative models, XGBoost models have the best performance in terms of mean absolute errors and root mean squared errors. The XGBoost models can learn and reproduce expert judgments and knowledge for the assessment of Arctic navigation risk. Feature importance (FI) and shapley additive explanations (SHAP) are used to further interpret the relationship between input data and predictions. The application of XGBoost, FI, and SHAP is aimed to improve the safety of Arctic shipping using advanced artificial intelligence techniques. The validated assessment enhances the quality and robustness of assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光里发布了新的文献求助10
1秒前
顺心人达发布了新的文献求助10
3秒前
徐磊完成签到,获得积分10
4秒前
HC发布了新的文献求助10
5秒前
Lucas应助qianyuan采纳,获得10
5秒前
fryeia完成签到,获得积分10
8秒前
冷静的手套完成签到 ,获得积分10
8秒前
美丽秋天完成签到,获得积分10
8秒前
时光里完成签到,获得积分10
10秒前
Anthony完成签到 ,获得积分10
11秒前
小二郎应助April采纳,获得30
12秒前
13秒前
kyt发布了新的文献求助30
13秒前
14秒前
充电宝应助HC采纳,获得10
14秒前
SciGPT应助chj采纳,获得10
19秒前
学者发布了新的文献求助10
19秒前
科目三应助无风风采纳,获得10
19秒前
qianyuan发布了新的文献求助10
19秒前
自然安波完成签到,获得积分20
21秒前
乐乐应助自由的元冬采纳,获得10
21秒前
26秒前
丘比特应助qin123采纳,获得10
27秒前
yuqinghui98发布了新的文献求助10
28秒前
28秒前
bella发布了新的文献求助10
29秒前
29秒前
大模型应助qianyuan采纳,获得10
30秒前
wsafhgfjb完成签到,获得积分10
31秒前
曹大壮完成签到,获得积分10
31秒前
chj发布了新的文献求助10
32秒前
科研通AI6.1应助floly采纳,获得20
33秒前
丘比特应助自由的元冬采纳,获得10
34秒前
香蕉大船发布了新的文献求助10
35秒前
36秒前
666发布了新的文献求助10
36秒前
白斯特发布了新的文献求助10
38秒前
大喜完成签到,获得积分10
38秒前
40秒前
斯文莺发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874911
求助须知:如何正确求助?哪些是违规求助? 6511603
关于积分的说明 15675369
捐赠科研通 4992535
什么是DOI,文献DOI怎么找? 2691206
邀请新用户注册赠送积分活动 1633555
关于科研通互助平台的介绍 1591191