Improving daily streamflow simulations for data-scarce watersheds using the coupled SWAT-LSTM approach

水流 SWAT模型 水土评价工具 环境科学 分水岭 雨量计 降水 计算机科学 气候学 水文学(农业) 气象学 机器学习 地图学 地理 地质学 流域 岩土工程
作者
Shengyue Chen,Jinliang Huang,Jr‐Chuan Huang,Jr-Chuan Huang,Jr-Chuan Huang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:622: 129734-129734 被引量:107
标识
DOI:10.1016/j.jhydrol.2023.129734
摘要

There is a scarcity of streamflow data owing to the limited availability of gauge networks or delayed gauging in most parts of the world. To overcome this challenge and reproduce long-duration daily streamflow in both ungauged and poorly gauged watersheds, we proposed a novel approach that couples the process-based model Soil and Water Assessment Tool (SWAT) and the interpretable machine learning (ML) model long short-term memory (LSTM). The watershed process features generated by SWAT were combined with meteorological features as inputs for LSTM. The coupled SWAT-LSTM approach was first developed in a data-rich coastal watershed in Fujian Province, China. During the testing period, the obtained Nash-Sutcliffe efficiency coefficient (NSE) of SWAT-LSTM is 0.885, which outperformed other SWAT-MLs (e.g., backward propagation neural network, NSE = 0.843; random forest, NSE = 0.838) and calibrated SWAT (NSE = 0.706) used as comparators. Precipitation is considered the most important feature to local streamflow from a ML perspective. The pre-trained SWAT-LSTM presented satisfactory performances over 30 years of simulations in 24 hypothesized data-scarce watersheds. In ungauged watersheds, the NSE ranged from 0.474 to 0.898, with a mean of 0.685. In poorly gauged watersheds, the pre-trained SWAT-LSTM was optimized using limited local observations by introducing the transfer learning technique, and the NSE ranged from 0.591 to 0.918, with a mean of 0.760, which was markedly more accurate than the new trained models locally. Spatial proximity and physical similarity should be considered simultaneously when selecting the optimal source for data-scarce watersheds, as better performance can be achieved in less time than with tandem trained the observations of all sources. This study demonstrates that coupling SWAT with interpretable LSTM enhances the modeling confidence and provides a potential shortcut to achieving long-duration streamflow simulations in both ungauged and poorly gauged watersheds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助王雪儿哈哈哈采纳,获得10
1秒前
SciGPT应助llll采纳,获得10
1秒前
3秒前
3秒前
3秒前
3秒前
晚上吃什么完成签到,获得积分10
3秒前
ChemMa发布了新的文献求助10
4秒前
丫丫发布了新的文献求助10
4秒前
易安发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
笨笨忘幽发布了新的文献求助10
6秒前
窦文涛完成签到,获得积分10
6秒前
6秒前
完美世界应助liuying采纳,获得10
7秒前
8秒前
THJJ完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
云赵完成签到,获得积分10
9秒前
斯文败类应助易安采纳,获得10
9秒前
9秒前
CWNU_HAN应助jyk采纳,获得30
10秒前
高天雨发布了新的文献求助20
10秒前
THJJ发布了新的文献求助10
11秒前
健康的洋葱关注了科研通微信公众号
12秒前
幸福鞯发布了新的文献求助10
12秒前
suiwuya完成签到,获得积分10
12秒前
所所应助暖阳采纳,获得10
13秒前
知之发布了新的文献求助10
13秒前
哦呵发布了新的文献求助10
13秒前
菜菜mm发布了新的文献求助10
13秒前
13秒前
平淡寻菡应助sjh采纳,获得20
13秒前
炙热灵枫完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300