Improving daily streamflow simulations for data-scarce watersheds using the coupled SWAT-LSTM approach

水流 SWAT模型 水土评价工具 环境科学 分水岭 雨量计 降水 计算机科学 气候学 水文学(农业) 气象学 机器学习 地图学 地理 地质学 流域 岩土工程
作者
Shengyue Chen,Jinliang Huang,Jr‐Chuan Huang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:622: 129734-129734 被引量:62
标识
DOI:10.1016/j.jhydrol.2023.129734
摘要

There is a scarcity of streamflow data owing to the limited availability of gauge networks or delayed gauging in most parts of the world. To overcome this challenge and reproduce long-duration daily streamflow in both ungauged and poorly gauged watersheds, we proposed a novel approach that couples the process-based model Soil and Water Assessment Tool (SWAT) and the interpretable machine learning (ML) model long short-term memory (LSTM). The watershed process features generated by SWAT were combined with meteorological features as inputs for LSTM. The coupled SWAT-LSTM approach was first developed in a data-rich coastal watershed in Fujian Province, China. During the testing period, the obtained Nash-Sutcliffe efficiency coefficient (NSE) of SWAT-LSTM is 0.885, which outperformed other SWAT-MLs (e.g., backward propagation neural network, NSE = 0.843; random forest, NSE = 0.838) and calibrated SWAT (NSE = 0.706) used as comparators. Precipitation is considered the most important feature to local streamflow from a ML perspective. The pre-trained SWAT-LSTM presented satisfactory performances over 30 years of simulations in 24 hypothesized data-scarce watersheds. In ungauged watersheds, the NSE ranged from 0.474 to 0.898, with a mean of 0.685. In poorly gauged watersheds, the pre-trained SWAT-LSTM was optimized using limited local observations by introducing the transfer learning technique, and the NSE ranged from 0.591 to 0.918, with a mean of 0.760, which was markedly more accurate than the new trained models locally. Spatial proximity and physical similarity should be considered simultaneously when selecting the optimal source for data-scarce watersheds, as better performance can be achieved in less time than with tandem trained the observations of all sources. This study demonstrates that coupling SWAT with interpretable LSTM enhances the modeling confidence and provides a potential shortcut to achieving long-duration streamflow simulations in both ungauged and poorly gauged watersheds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
外向烤鸡发布了新的文献求助10
3秒前
4秒前
科研混子完成签到,获得积分10
5秒前
7秒前
yaya小气猫发布了新的文献求助10
7秒前
10秒前
10秒前
10秒前
丘比特应助称心寒松采纳,获得10
10秒前
田様应助天空没有极限采纳,获得10
14秒前
记录吐吐发布了新的文献求助10
14秒前
14秒前
shouyu29完成签到,获得积分0
15秒前
愤怒的小吴完成签到,获得积分20
16秒前
科研通AI5应助yimiba采纳,获得10
19秒前
19秒前
称心寒松发布了新的文献求助10
20秒前
ding应助Ling采纳,获得10
21秒前
bz完成签到,获得积分10
25秒前
dnbe完成签到 ,获得积分10
27秒前
小半完成签到,获得积分10
28秒前
郁乾完成签到,获得积分10
29秒前
34秒前
慕青应助woods采纳,获得10
34秒前
yeye完成签到,获得积分10
34秒前
科研通AI5应助旺仔采纳,获得10
34秒前
36秒前
39秒前
Diamond发布了新的文献求助10
39秒前
kzzzzz完成签到,获得积分10
40秒前
蘇q完成签到 ,获得积分10
42秒前
43秒前
43秒前
AlisaWu完成签到,获得积分10
46秒前
yimiba发布了新的文献求助10
47秒前
情怀应助冰冰采纳,获得10
47秒前
47秒前
48秒前
科研通AI5应助donson采纳,获得30
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783829
求助须知:如何正确求助?哪些是违规求助? 3329060
关于积分的说明 10239825
捐赠科研通 3044499
什么是DOI,文献DOI怎么找? 1671057
邀请新用户注册赠送积分活动 800117
科研通“疑难数据库(出版商)”最低求助积分说明 759192