A facial depression recognition method based on hybrid multi-head cross attention network

计算机科学 萧条(经济学) 主管(地质) 模式识别(心理学) 人工智能 语音识别 生物 古生物学 宏观经济学 经济
作者
Yutong Li,Zhenyu Liu,Li Zhou,Xiaoyan Yuan,Zixuan Shangguan,Xiping Hu,Bin Hu
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:17 被引量:3
标识
DOI:10.3389/fnins.2023.1188434
摘要

Deep-learn methods based on convolutional neural networks (CNNs) have demonstrated impressive performance in depression analysis. Nevertheless, some critical challenges need to be resolved in these methods: (1) It is still difficult for CNNs to learn long-range inductive biases in the low-level feature extraction of different facial regions because of the spatial locality. (2) It is difficult for a model with only a single attention head to concentrate on various parts of the face simultaneously, leading to less sensitivity to other important facial regions associated with depression. In the case of facial depression recognition, many of the clues come from a few areas of the face simultaneously, e.g., the mouth and eyes. To address these issues, we present an end-to-end integrated framework called Hybrid Multi-head Cross Attention Network (HMHN), which includes two stages. The first stage consists of the Grid-Wise Attention block (GWA) and Deep Feature Fusion block (DFF) for the low-level visual depression feature learning. In the second stage, we obtain the global representation by encoding high-order interactions among local features with Multi-head Cross Attention block (MAB) and Attention Fusion block (AFB). We experimented on AVEC2013 and AVEC2014 depression datasets. The results of AVEC 2013 (RMSE = 7.38, MAE = 6.05) and AVEC 2014 (RMSE = 7.60, MAE = 6.01) demonstrated the efficacy of our method and outperformed most of the state-of-the-art video-based depression recognition approaches. We proposed a deep learning hybrid model for depression recognition by capturing the higher-order interactions between the depression features of multiple facial regions, which can effectively reduce the error in depression recognition and gives great potential for clinical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
3秒前
3秒前
5秒前
7秒前
DJHKFD发布了新的文献求助10
8秒前
11秒前
Okpooko发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
17秒前
zy完成签到,获得积分10
18秒前
zy发布了新的文献求助10
21秒前
22秒前
英俊的铭应助缘来是梦采纳,获得10
24秒前
善学以致用应助张萌采纳,获得10
25秒前
25秒前
77完成签到,获得积分10
26秒前
Nakacoke77发布了新的文献求助10
27秒前
27秒前
皮肤科王东明完成签到,获得积分10
29秒前
Tiffan发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
wanqiu发布了新的文献求助10
33秒前
张萌发布了新的文献求助10
37秒前
Nakacoke77完成签到,获得积分10
37秒前
西瓜完成签到 ,获得积分10
39秒前
大个应助freezing采纳,获得10
40秒前
QL完成签到,获得积分10
41秒前
43秒前
瞌睡社畜发布了新的文献求助30
43秒前
缘来是梦完成签到,获得积分10
47秒前
呱呱完成签到 ,获得积分10
48秒前
冰魂应助魏伯安采纳,获得50
50秒前
刻苦的秋柔完成签到,获得积分10
54秒前
55秒前
57秒前
woheyumi发布了新的文献求助10
58秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881354
求助须知:如何正确求助?哪些是违规求助? 3423725
关于积分的说明 10735812
捐赠科研通 3148676
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087