烟草
基因组编辑
原生质体
清脆的
Cas9
生物
计算生物学
核糖核蛋白
引导RNA
基因组
细胞生物学
遗传学
核糖核酸
病毒
基因
作者
Fu‐Hui Wu,Chen‐Tran Hsu,Choun‐Sea Lin
标识
DOI:10.1007/978-1-0716-3131-7_19
摘要
Insertion of a specific sequence in a targeted region for precise editing is still a major challenge in plants. Current protocols rely on inefficient homology-directed repair or non-homologous end-joining with modified double-stranded oligodeoxyribonucleotides (dsODNs) as donors. We developed a simple protocol that eliminates the need for expensive equipment, chemicals, modifications of donor DNA, and complicated vector construction. The protocol uses polyethylene glycol (PEG)-calcium to deliver low-cost, unmodified single-stranded oligodeoxyribonucleotides (ssODNs) and CRISPR/Cas9 ribonucleoprotein (RNP) complexes into Nicotiana benthamiana protoplasts. Regenerated plants were obtained from edited protoplasts with an editing frequency of up to 50% at the target locus. The inserted sequence was inherited to the next generation; this method thus opens the possibility for the future exploration of genomes by targeted insertion in plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI