Artificial intelligence-assisted precise preoperative prediction of lateral cervical lymph nodes metastasis in papillary thyroid carcinoma via a clinical-CT radiomic combined model

医学 接收机工作特性 放射科 随机森林 甲状腺癌 颈淋巴结 无线电技术 逻辑回归 淋巴结 转移 甲状腺癌 人工智能 癌症 甲状腺 病理 计算机科学 内科学
作者
Junze Du,Xinyun He,Rui Fan,Yi Zhang,Hao Liu,Haoxi Liu,Shangqing Liu,Shichao Li
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002267
摘要

Objectives: This study aimed to develop an artificial intelligence-assisted model for the preoperative prediction of lateral cervical lymph node metastasis (LCLNM) in papillary thyroid carcinoma (PTC) using computed tomography (CT) radiomics, providing a new noninvasive and accurate diagnostic tool for PTC patients with LCLNM. Methods: This retrospective study included 389 confirmed PTC patients, randomly divided into a training set ( n = 272) and an internal validation set ( n = 117), with an additional 40 patients from another hospital as an external validation set. Patient demographics were evaluated to establish a clinical model. Radiomic features were extracted from preoperative contrast-enhanced CT images (venous phase) for each patient. Feature selection was performed using analysis of variance and the least absolute shrinkage and selection operator algorithm. We employed support vector machine, random forest (RF), logistic regression, and XGBoost algorithms to build CT radiomic models for predicting LCLNM. A radiomics score (Rad-score) was calculated using a radiomic signature-based formula. A combined clinical-radiomic model was then developed. The performance of the combined model was evaluated using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results: A total of 1724 radiomic features were extracted from each patient’s CT images, with 13 features selected based on nonzero coefficients related to LCLNM. Four clinically relevant factors (age, tumor location, thyroid capsule invasion, and central cervical lymph node metastasis) were significantly associated with LCLNM. Among the algorithms tested, the RF algorithm outperformed the others with five-fold cross-validation on the training set. After integrating the best algorithm with clinical factors, the areas under the ROC curves for the training, internal validation, and external validation sets were 0.910 (95% confidence interval [CI]: 0.729–0.851), 0.876 (95% CI: 0.747–0.911), and 0.821 (95% CI: 0.555–0.802), respectively, with DCA demonstrating the clinical utility of the combined radiomic model. Conclusions: This study successfully established a clinical-CT radiomic combined model for predicting LCLNM, which may significantly enhance surgical decision-making for lateral cervical lymph node dissection in patients with PTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jenny完成签到,获得积分10
1秒前
1秒前
小民完成签到 ,获得积分10
2秒前
LIUUU完成签到,获得积分10
2秒前
mafukairi应助ljf采纳,获得10
2秒前
wubinbin完成签到 ,获得积分10
3秒前
KALS完成签到 ,获得积分10
4秒前
往返完成签到,获得积分10
5秒前
小青虫完成签到,获得积分10
5秒前
pcr163应助天神采纳,获得30
6秒前
popcoming完成签到,获得积分10
7秒前
dwl完成签到 ,获得积分10
7秒前
Dream完成签到,获得积分0
7秒前
123完成签到 ,获得积分10
9秒前
笨笨青筠完成签到 ,获得积分10
10秒前
phobeeee完成签到 ,获得积分10
10秒前
ZSHAN完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
坚定背包完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小稻草人应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
外向一一完成签到 ,获得积分10
12秒前
门住完成签到 ,获得积分10
13秒前
13秒前
进退须臾完成签到,获得积分10
13秒前
王世缘完成签到,获得积分20
15秒前
2316690509完成签到 ,获得积分10
15秒前
tramp应助大吴克采纳,获得10
16秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Research on the design of hear-through controllers for active noise control headphones based on cascade biquad filters considering different directions of sound arrivals 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872021
求助须知:如何正确求助?哪些是违规求助? 3413885
关于积分的说明 10687086
捐赠科研通 3138447
什么是DOI,文献DOI怎么找? 1731693
邀请新用户注册赠送积分活动 834937
科研通“疑难数据库(出版商)”最低求助积分说明 781478