Deep Learning-based Image Recognition Technology in Medical Diagnosis

深度学习 人工智能 卷积神经网络 计算机辅助设计 计算机科学 背景(考古学) 交叉口(航空) 机器学习 人工神经网络 残余物 像素 模式识别(心理学) 算法 工程类 古生物学 工程制图 生物 航空航天工程
作者
Xia Wu
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:10 (1)
标识
DOI:10.2478/amns-2025-0008
摘要

Abstract In the context of the computer era, the system of deep learning and other intelligent algorithms to assist medical diagnosis is gradually applied in the diagnosis and treatment of medical clinical diseases. To further study the application value of intelligent algorithms in medical diagnosis, this paper analyzes the depth of deep learning algorithms. Then, for the needs of medical diagnosis, the network architecture of convolutional neural is improved on the basis of deep learning algorithms, and then the MobileNet V2 network model is constructed by using residual neural, and a distraction (SA) mechanism module is introduced for image recognition and classification. This paper presents a CAD medical diagnosis system that uses deep learning image recognition to facilitate its use in medical clinical diagnosis. The optimized network model in this paper achieves smooth accuracy and loss rate of approximately 0.975 left and -0.969 in training. Compared with other network models, the four indexes of frequency weight intersection and merger ratio (0.904), mean pixel accuracy (0.881), background intersection and merger ratio (0.941) and diagnostic region intersection and merger ratio (0.807) of this paper’s model are all optimal. The F1-score evaluation indexes for image recognition in all three lung diseases in this paper reached more than 97%, and the AUC was as high as 99%. At the same time, the sensitivity of the CAD system in this paper is much higher than that of other systems, and the image recognition algorithm, as well as the CAD system designed in this paper, can improve the diagnostic efficiency of the primary health care units, and it can provide a reference for the detection of diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡吉完成签到,获得积分20
1秒前
枫叶完成签到,获得积分10
1秒前
汉堡包应助hc采纳,获得10
6秒前
6秒前
科研通AI5应助惠飞薇采纳,获得10
7秒前
快乐仙知完成签到 ,获得积分10
7秒前
简单的八宝粥完成签到,获得积分10
9秒前
酷炫的菠萝完成签到,获得积分10
9秒前
枫叶发布了新的文献求助20
10秒前
12秒前
TBHP完成签到,获得积分10
12秒前
sc95发布了新的文献求助10
16秒前
16秒前
Yii完成签到,获得积分10
17秒前
我不当大哥好多年完成签到,获得积分20
18秒前
bkagyin应助乌漆嘛黑采纳,获得10
19秒前
Jasper应助肉脸小鱼采纳,获得10
19秒前
斯文败类应助前进的光采纳,获得50
20秒前
Yii发布了新的文献求助10
21秒前
慕青应助葡吉采纳,获得10
21秒前
23秒前
科研通AI5应助谦让之云采纳,获得10
24秒前
敏感的惜文完成签到,获得积分10
25秒前
25秒前
健忘的金发布了新的文献求助10
26秒前
26秒前
sweetbearm应助pkinglu采纳,获得10
27秒前
27秒前
27秒前
27秒前
28秒前
传奇3应助刻苦士萧采纳,获得10
28秒前
28秒前
world完成签到,获得积分10
29秒前
29秒前
丘比特应助岚风玉采纳,获得10
29秒前
29秒前
30秒前
yiyi发布了新的文献求助10
31秒前
坤坤完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794649
求助须知:如何正确求助?哪些是违规求助? 3339446
关于积分的说明 10296040
捐赠科研通 3056142
什么是DOI,文献DOI怎么找? 1676904
邀请新用户注册赠送积分活动 804932
科研通“疑难数据库(出版商)”最低求助积分说明 762216