Metagenomic exploration and computational prediction of novel enzymes for polyethylene terephthalate degradation

基因组 塑料污染 环境修复 污染 可扩展性 人工智能 生化工程 计算生物学 环境科学 生物 计算机科学 生态学 污染 遗传学 基因 工程类 数据库
作者
Donya Afshar Jahanshahi,Mohammad Reza Rezaei Barzani,Mohammad Bahram,Shohreh Ariaeenejad,Kaveh Kavousi
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:289: 117640-117640 被引量:6
标识
DOI:10.1016/j.ecoenv.2024.117640
摘要

As a global environmental challenge, plastic pollution raises serious ecological and health concerns owing to the excessive accumulation of plastic waste, which disrupts ecosystems, harms wildlife, and threatens human health. Polyethylene terephthalate (PET), one of the most commonly used plastics, has contributed significantly to this growing crisis. This study offers a solution for plastic pollution by identifying novel PET-degrading enzymes. Using a combined approach of computational analysis and metagenomic workflow, we identified a diverse array of genes and enzymes linked to plastic degradation. Our study identified 1305,282 unmapped genes, 36,000 CAZymes, and 317 plastizymes in the soil samples were heavily contaminated with plastic. We extended our approach by training machine learning models to discover candidate PET-degrading enzymes. To overcome the scarcity of known PET-degrading enzymes, we used a Generative Adversarial Network (GAN) model for dataset augmentation and a pretrained deep Evolutionary Scale Language Model (ESM) to generate sequence embeddings for classification. Finally, 21 novel PET-degrading enzymes were identified. These enzymes were further validated through active site analysis, amino acid composition analysis, and 3D structure comparison. Additionally, we isolated bacterial strains from contaminated soils and extracted plastizymes to demonstrate their potential for environmental remediation. This study highlights the importance of biotechnological solutions for plastic pollution, emphasizing scalable, cost-effective processes and the integration of computational and metagenomic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助研ZZ采纳,获得10
1秒前
陈cxz完成签到 ,获得积分10
2秒前
Jiangnj完成签到,获得积分10
2秒前
3秒前
4秒前
8R60d8应助小灰采纳,获得10
4秒前
九沂完成签到,获得积分10
4秒前
会举重的树完成签到 ,获得积分10
8秒前
独孤幻月96应助zhou采纳,获得10
9秒前
orixero应助Hanaooooo采纳,获得10
11秒前
Beginner发布了新的文献求助30
11秒前
lunhui6453完成签到 ,获得积分10
11秒前
瑾进完成签到 ,获得积分10
12秒前
bsf123完成签到,获得积分10
12秒前
魔幻海豚发布了新的文献求助10
12秒前
13秒前
兔子发布了新的文献求助10
16秒前
17秒前
欣嫩谷发布了新的文献求助30
17秒前
17秒前
zhang完成签到,获得积分10
18秒前
瞿海蓝发布了新的文献求助10
19秒前
酷波er应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI5应助落雨采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
23秒前
思源应助科研通管家采纳,获得10
23秒前
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
23秒前
慈祥的鸣凤完成签到 ,获得积分10
24秒前
浮游应助魔幻海豚采纳,获得10
24秒前
唐泽雪穗应助魔幻海豚采纳,获得10
24秒前
bainannan完成签到,获得积分10
26秒前
orixero应助Beginner采纳,获得10
28秒前
三三完成签到 ,获得积分10
29秒前
Hanaooooo完成签到,获得积分20
29秒前
寒天帝完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4804341
求助须知:如何正确求助?哪些是违规求助? 4120965
关于积分的说明 12750005
捐赠科研通 3854064
什么是DOI,文献DOI怎么找? 2122468
邀请新用户注册赠送积分活动 1144515
关于科研通互助平台的介绍 1035729