A cost function approximation method for dynamic vehicle routing with docking and LIFO constraints

先进先出和后进先出会计 对接(动物) 计算机科学 数学优化 数学 FIFO(计算和电子) 医学 计算机硬件 护理部
作者
Markó Horváth,Tamás Kis,Péter Györgyi
出处
期刊:Multimodal transportation 卷期号:4 (1): 100194-100194
标识
DOI:10.1016/j.multra.2025.100194
摘要

In this paper, we study a dynamic pickup and delivery problem with docking constraints. There is a homogeneous fleet of vehicles to serve pickup-and-delivery requests at given locations. The vehicles can be loaded up to their capacity, while unloading has to follow the last-in-first-out (LIFO) rule. The locations have a limited number of docking ports for loading and unloading, which may force the vehicles to wait. The problem is dynamic since the transportation requests arrive real-time, over the day. Accordingly, the routes of the vehicles are to be determined dynamically. The goal is to satisfy all the requests such that a combination of tardiness penalties and traveling costs is minimized. We propose a cost function approximation based solution method. In each decision epoch, we solve the respective optimization problem with a perturbed objective function to ensure the solutions remain adaptable to accommodate new requests. We penalize waiting times and idle vehicles. We propose a variable neighborhood search based method for solving the optimization problems, and we apply two existing local search operators, and we also introduce a new one. We evaluate our method using a widely adopted benchmark dataset, and the results demonstrate that our approach significantly surpasses the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
范丞丞发布了新的文献求助10
刚刚
刚刚
研0种牛马发布了新的文献求助10
刚刚
zoro完成签到,获得积分10
刚刚
刚刚
刚刚
豆本豆完成签到 ,获得积分10
1秒前
Cancellerzz完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
观潮应助科研通管家采纳,获得10
1秒前
淡定采波完成签到,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
慕青应助SUE采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
打打应助猪小屁采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得100
2秒前
慕青应助科研通管家采纳,获得20
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
大胆十八应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
超帅孱应助二十一日采纳,获得10
3秒前
泡泡应助科研通管家采纳,获得10
3秒前
观潮应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
田様应助她在他城采纳,获得10
3秒前
温暖白容发布了新的文献求助10
3秒前
3秒前
研友_VZG7GZ应助pbj采纳,获得10
4秒前
烟花应助傲娇的秋柔采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
4秒前
温暖白容发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710924
求助须知:如何正确求助?哪些是违规求助? 5201614
关于积分的说明 15262765
捐赠科研通 4863420
什么是DOI,文献DOI怎么找? 2610723
邀请新用户注册赠送积分活动 1560911
关于科研通互助平台的介绍 1518506