MB-TaylorFormer V2: Improved Multi-branch Linear Transformer Expanded by Taylor Formula for Image Restoration

变压器 数学 泰勒级数 计算机科学 电气工程 工程类 数学分析 电压
作者
Zhi Jin,Yuwei Qiu,Kaihao Zhang,Hongdong Li,Wenhan Luo
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.04486
摘要

Recently, Transformer networks have demonstrated outstanding performance in the field of image restoration due to the global receptive field and adaptability to input. However, the quadratic computational complexity of Softmax-attention poses a significant limitation on its extensive application in image restoration tasks, particularly for high-resolution images. To tackle this challenge, we propose a novel variant of the Transformer. This variant leverages the Taylor expansion to approximate the Softmax-attention and utilizes the concept of norm-preserving mapping to approximate the remainder of the first-order Taylor expansion, resulting in a linear computational complexity. Moreover, we introduce a multi-branch architecture featuring multi-scale patch embedding into the proposed Transformer, which has four distinct advantages: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field; 4) accelerated training and inference speed. Hence, the proposed model, named the second version of Taylor formula expansion-based Transformer (for short MB-TaylorFormer V2) has the capability to concurrently process coarse-to-fine features, capture long-distance pixel interactions with limited computational cost, and improve the approximation of the Taylor expansion remainder. Experimental results across diverse image restoration benchmarks demonstrate that MB-TaylorFormer V2 achieves state-of-the-art performance in multiple image restoration tasks, such as image dehazing, deraining, desnowing, motion deblurring, and denoising, with very little computational overhead. The source code is available at https://github.com/FVL2020/MB-TaylorFormerV2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助la采纳,获得10
刚刚
研友_5ZlN6L完成签到,获得积分20
2秒前
能干的巨人完成签到,获得积分10
2秒前
3秒前
亚米完成签到,获得积分20
3秒前
4秒前
自由从阳发布了新的文献求助10
4秒前
菲菲公主完成签到 ,获得积分10
4秒前
4秒前
22222发布了新的文献求助10
4秒前
稳重秋寒完成签到 ,获得积分10
5秒前
wch666发布了新的文献求助10
5秒前
知止完成签到,获得积分10
6秒前
CodeCraft应助霸气的草莓采纳,获得10
6秒前
颜靖仇发布了新的文献求助10
7秒前
7秒前
7秒前
Gee完成签到,获得积分20
7秒前
贪玩的冰绿完成签到,获得积分10
7秒前
9秒前
斯文败类应助mdmdd采纳,获得10
9秒前
0000发布了新的文献求助10
10秒前
AlexLee发布了新的文献求助10
11秒前
11秒前
ljy完成签到,获得积分10
11秒前
12秒前
12秒前
科目三应助左右脑采纳,获得10
12秒前
泽普完成签到,获得积分10
14秒前
米多奇完成签到 ,获得积分10
14秒前
一橙沁城完成签到,获得积分10
15秒前
梧桐雨发布了新的文献求助30
15秒前
15秒前
愉快向彤完成签到 ,获得积分10
15秒前
16秒前
Ava应助美好海瑶采纳,获得10
16秒前
甜蜜寄文发布了新的文献求助10
16秒前
17秒前
pms完成签到,获得积分10
17秒前
wanci应助123lura采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Revolution in China and Russia: Reorganizing empires into nation states 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932694
求助须知:如何正确求助?哪些是违规求助? 3477663
关于积分的说明 10998236
捐赠科研通 3207993
什么是DOI,文献DOI怎么找? 1772620
邀请新用户注册赠送积分活动 859907
科研通“疑难数据库(出版商)”最低求助积分说明 797378