Multimodal multiview bilinear graph convolutional network for mild cognitive impairment diagnosis

计算机科学 人工智能 神经影像学 邻接表 双线性插值 模式识别(心理学) 图形 机器学习 计算机视觉 医学 算法 理论计算机科学 精神科
作者
Guanghui Wu,Xiang Li,Yunfeng Xu,Benzheng Wei
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/ada8af
摘要

Abstract Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g., genetic, clinical information, etc.) that may have underlying disease information. In addition, imaging data acquired from different devices may exhibit varying degrees of heterogeneity, potentially resulting in numerous noisy connections during network construction. To address these challenges, this study proposes a Multimodal Multiview Bilinear Graph Convolution (MMBGCN) framework for disease risk prediction. Firstly, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) features are extracted from magnetic resonance imaging (MRI), and non-imaging information is combined with the features extracted from MRI to construct a multimodal shared adjacency matrix. The shared adjacency matrix is then used to construct the multiview network so that the effect of potential disease information in the non-imaging information on the model can be considered. Finally, the MRI features extracted by the multiview network are weighted to reduce noise, and then the spatial pattern is restored by bilinear convolution. The features of the recovered spatial patterns are then combined with the genetic information for disease prediction. The proposed method is tested on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Extensive experiments demonstrate the superior performance of the proposed framework and its ability to outperform other related algorithms. The average classification accuracy in the binary classification task in this study is 89.6%. The experimental results demonstrate that the method proposed in this study facilitates research on MCI diagnosis using multimodal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
个性的梦岚关注了科研通微信公众号
3秒前
3秒前
daqisong完成签到,获得积分10
4秒前
LJB完成签到 ,获得积分10
4秒前
5秒前
董帅发布了新的文献求助10
5秒前
四夕水窖发布了新的文献求助10
8秒前
Cc完成签到,获得积分10
8秒前
Amymyshirley发布了新的文献求助10
8秒前
zfcc完成签到,获得积分10
8秒前
星star完成签到 ,获得积分10
8秒前
嘀嘀菇菇完成签到 ,获得积分10
8秒前
杰柒发布了新的文献求助40
9秒前
cola121完成签到 ,获得积分10
10秒前
优雅老六完成签到,获得积分10
12秒前
Cc关闭了Cc文献求助
12秒前
12秒前
Linden_bd完成签到 ,获得积分10
14秒前
852应助ss采纳,获得10
14秒前
虚心的清完成签到,获得积分10
15秒前
儒雅珩完成签到,获得积分10
15秒前
科研通AI5应助恣睢采纳,获得10
16秒前
CodeCraft应助Badluck采纳,获得10
17秒前
17秒前
Ly发布了新的文献求助10
17秒前
18秒前
18秒前
义气的信封完成签到 ,获得积分10
19秒前
思源应助呆萌的羽毛采纳,获得10
21秒前
吐个泡泡应助搞怪的幻梅采纳,获得10
21秒前
21秒前
21秒前
摆渡人发布了新的文献求助10
22秒前
WSy关闭了WSy文献求助
22秒前
不安的夜山完成签到,获得积分10
22秒前
24秒前
25秒前
恣睢完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919305
求助须知:如何正确求助?哪些是违规求助? 4191351
关于积分的说明 13017052
捐赠科研通 3961629
什么是DOI,文献DOI怎么找? 2171783
邀请新用户注册赠送积分活动 1189709
关于科研通互助平台的介绍 1098342