Semi‐supervised medical image segmentation network based on mutual learning

计算机科学 人工智能 分割 机器学习 医学影像学 人工神经网络 相互信息 图像分割 可靠性(半导体) 模式识别(心理学) 图像(数学) 数据挖掘 功率(物理) 物理 量子力学
作者
Junmei Sun,Tianyang Wang,Meixi Wang,Xiumei Li,Yingying Xu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17547
摘要

Abstract Background Semi‐supervised learning provides an effective means to address the challenge of insufficient labeled data in medical image segmentation tasks. However, when a semi‐supervised segmentation model is overfitted and exhibits cognitive bias, its performance will deteriorate. Errors stemming from cognitive bias can quickly amplify and become difficult to correct during the training process of neural networks, resulting in the continuous accumulation of erroneous knowledge. Purpose To address the issue of error accumulation, a novel learning strategy is required to enhance the accuracy of medical image segmentation. Methods This paper proposes a semi‐supervised medical image segmentation network based on mutual learning (MLNet) to alleviate the issue of continuous accumulation of erroneous knowledge. The MLNet adopts a teacher‐student network as the backbone framework, training student and teacher networks on labeled data and mutually updating network parameter weights, enabling the two models to learn from each other. Additionally, an image partial exchange algorithm (IPE) as an appropriate perturbation addition method is proposed to reduce the introduction of erroneous information and the disruption to the contextual information of the image. Results In the 10% labeled experiment on the ACDC dataset, our Dice coefficient reached 89.48%, a 9.28% improvement over the baseline model. In the 10% labeled experiment on the BraTS2019 dataset, the proposed method still performs exceptionally well, achieving 84.56%, surpassing other comparative methods. Conclusions Compared with other methods, experimental results demonstrate that our approach achieves optimal performance across all metrics, proving its effectiveness and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助12采纳,获得10
刚刚
大人完成签到,获得积分10
1秒前
1秒前
可爱的函函应助舒心易真采纳,获得10
2秒前
MchemG应助科研通管家采纳,获得20
4秒前
科研通AI5应助LiugQin采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
expuery发布了新的文献求助10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
5秒前
Owen应助a1423072381采纳,获得10
5秒前
5秒前
5秒前
王王会完成签到,获得积分10
6秒前
7秒前
9秒前
10秒前
银杏完成签到,获得积分10
10秒前
小蘑菇应助afree采纳,获得30
11秒前
Akim应助12采纳,获得10
11秒前
margaret完成签到 ,获得积分10
11秒前
尊敬雨灵完成签到,获得积分10
12秒前
hhhhzzzz发布了新的文献求助10
12秒前
萨尔莫斯发布了新的文献求助10
12秒前
科勒基侈发布了新的文献求助10
12秒前
expuery完成签到,获得积分10
13秒前
13秒前
热心柚子发布了新的文献求助10
15秒前
15秒前
15秒前
hu11完成签到,获得积分10
16秒前
勤恳的茗茗完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800648
求助须知:如何正确求助?哪些是违规求助? 3345931
关于积分的说明 10327683
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627