Raman Spectral Feature Enhancement Framework for Complex Multiclassification Tasks

模式识别(心理学) 减法 人工智能 稳健性(进化) 拉曼光谱 特征(语言学) 瓶颈 计算机科学 化学 数学 生物化学 物理 语言学 算术 哲学 光学 基因 嵌入式系统
作者
Jiaqi Hu,Chenlong Xue,Ken Xiaokeng,Junyu Wei,Zhicheng Su,Qiuyue Chen,Zhonghong Ou,Shuxin Chen,Zhe Huang,Yilin Xu,Haoyun Wei,Yanjun Liu,Perry Ping Shum,Jinna Chen
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (1): 130-139
标识
DOI:10.1021/acs.analchem.4c03261
摘要

Raman spectroscopy enables label-free clinical diagnosis in a single step. However, identifying an individual carrying a specific disease from people with a multi-disease background is challenging. To address this, we developed a Raman spectral implicit feature augmentation with a Raman Intersection, Union, and Subtraction augmentation strategy (RIUS). RIUS expands the data set without requiring additional labeled data by leveraging set operations at the feature level, significantly enhancing model performance across various applications. On a challenging 30-class bacterial classification task, RIUS demonstrated a substantial improvement, increasing the accuracy of ResNet by 2.1% and that of SE-ResNet by 1.4%, achieving accuracies of 85.7% and 87.1%, respectively, on the Bacteria-ID-4 Data set, where RIUS improved ResNet and SE-ResNet accuracies by 13.6% and 14.5%, respectively, with only ten samples per category. When the sample size was reduced, accuracy gains increased to 31.7% and 38.3%, demonstrating the method's robustness across different sample volumes. Compared to basic augmentation, our method exhibited superior performance across various sample volumes and demonstrated exceptional adaptability to different levels of complexity. RIUS exhibited superior performance, particularly in complex settings. Moreover, cluster analysis validated the effectiveness of the implicit feature augmentation module and the consistency between theoretical design and experimental results. We further validated our approach using clinical serum samples from 70 breast cancer patients and 70 controls, achieving an AUC of 0.94 and a sensitivity of 92.9%. Our approach enhances the potential for precisely identifying diseases in complex settings and offers plug-and-play enhancement for existing classification models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳平卉发布了新的文献求助10
刚刚
summy发布了新的文献求助10
刚刚
ironsilica发布了新的文献求助10
刚刚
1秒前
浅墨发布了新的文献求助10
1秒前
zs完成签到,获得积分10
1秒前
yuan完成签到,获得积分20
2秒前
海光发布了新的文献求助10
2秒前
2秒前
朴素的黄豆完成签到,获得积分10
2秒前
情怀应助冷艳的竺采纳,获得10
2秒前
tudou0210发布了新的文献求助10
2秒前
希望天下0贩的0应助summy采纳,获得10
4秒前
4秒前
AnitaAdal应助社恐小魏采纳,获得10
4秒前
5秒前
胡维红发布了新的文献求助10
5秒前
5秒前
科研通AI5应助xiaoruirx采纳,获得10
5秒前
6秒前
6秒前
xhy完成签到,获得积分20
6秒前
科研通AI5应助liu采纳,获得10
7秒前
markowits完成签到,获得积分10
7秒前
8秒前
欣喜依白完成签到,获得积分10
9秒前
qsx完成签到,获得积分10
9秒前
xhy发布了新的文献求助10
9秒前
9秒前
K. G.完成签到,获得积分0
10秒前
10秒前
CodeCraft应助飞跃采纳,获得10
11秒前
早早完成签到,获得积分10
11秒前
科研通AI2S应助eve采纳,获得10
12秒前
上官若男应助nazi采纳,获得10
12秒前
我一拳打树上完成签到,获得积分10
12秒前
传奇3应助阿金采纳,获得10
13秒前
ZZZ完成签到,获得积分10
13秒前
传奇3应助王振强采纳,获得10
14秒前
hu970完成签到,获得积分10
14秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817349
求助须知:如何正确求助?哪些是违规求助? 3360735
关于积分的说明 10409073
捐赠科研通 3078857
什么是DOI,文献DOI怎么找? 1690789
邀请新用户注册赠送积分活动 814164
科研通“疑难数据库(出版商)”最低求助积分说明 768050