幽门螺杆菌
材料科学
吸附
原位
纳米颗粒
分析化学(期刊)
纳米技术
色谱法
化学
物理化学
有机化学
胃肠病学
医学
作者
Minmin Zhao,Zhu Zhang,Chao Tan,Wei Wang,Lei Yang,Zegao Wang
标识
DOI:10.1021/acsami.4c18702
摘要
Detection of Helicobacter pylori is essential for the prevention of gastric cancer. By detecting the metabolized NH3, it was able to noninvasively reveal the state of H. pylori; however, it is still a challenge since the metabolized NH3 concentration is much lower for conventional gas sensors. Herein, we developed a MoS2-based NH3 sensor for continuous, real-time monitoring of H. pylori growth. The atomic thin layer and the all-exposed surface of MoS2 facilitate NH3 adsorption and charge transferring. A high-response NH3 sensor was prepared by surface decoration of MoS2 by depositing metal nanoparticles. The Fe-decorated MoS2 sensor outperformed with a high response of 40.9% for 5.7 ppm of NH3 at 25 ± 2 °C, low LOD (6.2 ppb), and long-term stability with a response of 12.5% for 5.7 ppm of NH3 after 5 months. The Fe-decorated MoS2 sensor was applied to the detection of H. pylori and the real-time in situ monitoring of its 92 h growth cycle. The NH3 release curve of the exponential phase during H. pylori growth was continuously monitored, and the NH3 concentration was quantified. The maximum specific rate of NH3 release was 0.195 ± 0.005 h-1, which is well-consistent with the nature of H. pylori growth. This study opens up a technological roadmap for noninvasive detection of H. pylori in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI