Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm

稳健性(进化) 优化算法 算法 人工智能 配体(生物化学) 蛋白质-配体对接 计算机科学 化学 数学 计算化学 数学优化 分子动力学 虚拟筛选 生物化学 受体 基因
作者
Minghui Xin,Zechen Wang,Zhihao Wang,Yuanyuan Qu,Yanmei Yang,Yongqiang Li,Mingwen Zhao,Liangzhen Zheng,Yuguang Mu,Weifeng Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01096
摘要

In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring. Our results clearly indicated that compared to traditional optimization algorithms (such as Prime MM-GBSA and Vina optimization), DeepRMSD+Vina exhibits higher performance when treating diverse protein-ligand cases. The DeepRMSD+Vina is robust and can always generate the correct binding structures even if perturbations (up to 3 Å) are introduced to the input structure. The success rate is 62% for perturbation with a RMSD within 2-3 Å. However, the success rate dramatically drops to 11% for large perturbations, with RMSD extending to 3-4 Å. Furthermore, compared to the widely used optimization protocol of AutoDock Vina, the DL-generated conformation shows a balanced performance for all of the systems under examination. Overall, the DL-based DeepRMSD+Vina is unarguably more reliable than the traditional methods, which is attributed to the physically inspired design of the neural networks in DeepRMSD+Vina where the distance-transformed features describing the atomic interactions between the protein and the ligand have been explicitly considered and modeled. The outstanding robustness of the DL-based ligand conformational optimization algorithm further validates its superiority in the field of conformational optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
想不出来完成签到 ,获得积分10
刚刚
科目三应助chen采纳,获得10
刚刚
cc完成签到,获得积分10
2秒前
2秒前
可爱的函函应助sanyecai采纳,获得10
2秒前
舟舟莉发布了新的文献求助10
3秒前
3秒前
NAN完成签到,获得积分10
3秒前
4秒前
5秒前
luckytuantuan发布了新的文献求助10
5秒前
李卓发布了新的文献求助10
6秒前
轻松元柏完成签到,获得积分10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
qiao应助科研通管家采纳,获得10
8秒前
左丘白桃应助科研通管家采纳,获得20
8秒前
8秒前
专注的溪流完成签到,获得积分10
8秒前
syhero完成签到,获得积分10
8秒前
科研通AI5应助ardejiang采纳,获得10
9秒前
tjpuzhang发布了新的文献求助10
9秒前
虚幻的玉米完成签到,获得积分10
11秒前
11秒前
DLL完成签到 ,获得积分10
12秒前
李爱国应助舟舟莉采纳,获得150
13秒前
斯文败类应助keeper王采纳,获得10
14秒前
yalin完成签到,获得积分10
14秒前
隐形曼青应助mdusty采纳,获得10
15秒前
16秒前
17秒前
文静的善若完成签到 ,获得积分20
17秒前
cdercder应助luckytuantuan采纳,获得10
17秒前
18秒前
snn完成签到 ,获得积分10
19秒前
19秒前
20秒前
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783481
求助须知:如何正确求助?哪些是违规求助? 3328651
关于积分的说明 10238076
捐赠科研通 3043956
什么是DOI,文献DOI怎么找? 1670750
邀请新用户注册赠送积分活动 799845
科研通“疑难数据库(出版商)”最低求助积分说明 759149