A Comparative Evaluation of Deep Learning Techniques for Smart Contract Vulnerability Classification

脆弱性(计算) 人工智能 计算机科学 深度学习 计算机安全
作者
Martina Rossini,Stefano Ferretti
标识
DOI:10.1145/3703462
摘要

Smart contracts are self-executing digital contracts that run on a blockchain network. They enable the automation and decentralization of various operations and have become increasingly popular in recent years. However, smart contracts are susceptible to vulnerabilities, and their deployment without proper security testing can result in severe consequences, such as financial losses and reputational damage. In this paper, we explore the use of deep learning techniques, particularly Convolutional Neural Networks (CNNs), for detecting and classifying vulnerabilities in smart contracts deployed on the Ethereum main net. We compare different kinds of neural architectures, i.e., a baseline LSTM, multiple 1D CNNs working on the smart contracts’ bytecode, a Vision Transformer (Swin v2 Tiny), and various 2D CNNs that work on RGB images obtained from the bytecode (i.e., ResNet-50, ResNeXt-50, Inception v3, and EfficientNetv2 Small). We provide an in-depth analysis of these techniques to classify a dataset of smart contracts we have collected. Our study shows that the use of deep neural networks can represent a promising technique to automatically assess smart contracts’ correctness and classify potential vulnerabilities. According to our experiments, the ResNet 1D CNN working directly on the smart contract bytecode offers the best results in terms of classification capabilities. Moreover, due to the unbalanced sizes of the different classes, the classification resulted in more effectiveness for the unchecked calls and reentrancy vulnerability classes, while still providing good results for others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cdercder应助耳机单蹦采纳,获得10
3秒前
ydk完成签到,获得积分10
4秒前
lucy完成签到,获得积分10
4秒前
6秒前
西西发布了新的文献求助10
6秒前
ding应助jcae123采纳,获得10
7秒前
机器狗完成签到,获得积分20
8秒前
华仔应助小夏咕噜采纳,获得10
9秒前
科研通AI5应助Ven23采纳,获得10
9秒前
耳机单蹦完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
13秒前
14秒前
泥泥发布了新的文献求助10
14秒前
张舒涵完成签到,获得积分10
15秒前
秀丽的小懒虫完成签到,获得积分10
15秒前
lemonyu完成签到 ,获得积分10
16秒前
Wsq完成签到,获得积分10
17秒前
bluee发布了新的文献求助10
17秒前
vae发布了新的文献求助10
18秒前
岳大大完成签到,获得积分10
19秒前
qi发布了新的文献求助10
19秒前
jcae123发布了新的文献求助10
19秒前
微风完成签到,获得积分10
20秒前
老北京发布了新的文献求助10
20秒前
老北京发布了新的文献求助10
20秒前
老北京发布了新的文献求助10
21秒前
21秒前
Dromaeotroodon完成签到,获得积分10
22秒前
22秒前
xuuuuumin完成签到 ,获得积分10
23秒前
集力申完成签到,获得积分10
24秒前
柚子发布了新的文献求助10
26秒前
bluee完成签到,获得积分10
31秒前
man完成签到 ,获得积分10
33秒前
wzjs完成签到 ,获得积分10
33秒前
qi完成签到,获得积分20
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779565
求助须知:如何正确求助?哪些是违规求助? 3325025
关于积分的说明 10221059
捐赠科研通 3040157
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522