Radiomics based on dual-energy CT virtual monoenergetic images to identify symptomatic carotid plaques: a multicenter study

无线电技术 多中心研究 医学 放射科 双重能量 核医学 计算机科学 医学物理学 病理 随机对照试验 骨质疏松症 骨矿物
作者
Weiming Hu,Guihan Lin,Weiyue Chen,Jian Wu,Ting Zhao,Lei Xu,Xusheng Qian,Lin Shen,Zhihan Yan,Minjiang Chen,Shuiwei Xia,Chenying Lu,Jing Yang,Min Xu,Weiqian Chen,Jiansong Ji
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-92855-3
摘要

This study aims to create a radiomics nomogram using dual-energy computed tomography (DECT) virtual monoenergetic images (VMI) to accurately identify symptomatic carotid plaques. Between January 2018 and May 2023, data from 416 patients were collected from two centers for retrospective analysis. Center 1 provided data for the training (n = 213) and internal validation (n = 93) sets, and center 2 supplied the external validation set (n = 110). Plaques imaged at 40 keV, 70 keV, and 100 keV were outlined, and the selected radiomics features were used to establish the radiomics model. The classifier with the highest area under the curve (AUC) in the training set generated the radiomics score (Rad-Score). Logistic regression was used to identify risk factors and establish a clinical model. A radiomics nomogram integrating the Rad-score and clinical risk factors was constructed. The predictive performance was evaluated using receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Plaque ulceration and plaque burden are independent risk factors for symptomatic carotid plaques. The 40 + 70 keV radiomics model achieved excellent diagnostic performance, with an average AUC of 0.805 across all validation sets. Furthermore, the radiomics nomogram, integrating the Rad-score with clinical predictors, demonstrated robust diagnostic accuracy, with AUCs of 0.909, 0.850, and 0.804 in the training, internal validation, and external validation sets, respectively. DCA results suggested that the nomogram was clinically valuable. Our study developed and validated a DECT VMI-based radiomics nomogram for early identification of symptomatic carotid plaques, which can be used to assist clinical diagnosis and treatment decisions. The study introduces an innovative radiomics nomogram utilizing DECT VMI to discern symptomatic carotid plaques with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
予秋发布了新的文献求助10
3秒前
wwtt完成签到 ,获得积分10
3秒前
WULAVIVA完成签到,获得积分10
5秒前
qiaoxi完成签到,获得积分10
7秒前
蔷薇发布了新的文献求助20
7秒前
lemonkim完成签到,获得积分10
7秒前
文静若血完成签到,获得积分10
8秒前
LYB完成签到 ,获得积分10
8秒前
hdc12138完成签到,获得积分10
9秒前
9秒前
仇敌克星完成签到,获得积分10
9秒前
李思超完成签到 ,获得积分10
10秒前
雨后完成签到 ,获得积分10
10秒前
jzs完成签到 ,获得积分10
12秒前
记忆力超人完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
秋风之墩完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
18秒前
Nan关闭了Nan文献求助
19秒前
美满的水卉完成签到,获得积分10
20秒前
lyb完成签到 ,获得积分10
21秒前
IsaacW完成签到,获得积分10
24秒前
枫威完成签到 ,获得积分10
26秒前
HUO完成签到 ,获得积分10
27秒前
Jerry完成签到,获得积分10
27秒前
江舁完成签到 ,获得积分10
28秒前
小超完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
yl完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
ASDq完成签到,获得积分10
33秒前
烤鸭完成签到 ,获得积分10
34秒前
Henry完成签到,获得积分10
34秒前
111完成签到 ,获得积分10
34秒前
34秒前
hehe完成签到 ,获得积分10
35秒前
11完成签到 ,获得积分10
37秒前
Adc应助科研通管家采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715621
求助须知:如何正确求助?哪些是违规求助? 5235764
关于积分的说明 15274658
捐赠科研通 4866353
什么是DOI,文献DOI怎么找? 2612926
邀请新用户注册赠送积分活动 1563081
关于科研通互助平台的介绍 1520565