A Theory-Driven Approach to Fake News/Information Disorder Analysis and Explanation via Target-Based Emotion–Stance Analysis (TESA) and Interpretive Graph Generation (IGG)

语篇分析 心理学 情绪分析 图形 假新闻 计算机科学 认知心理学 自然语言处理 语言学 理论计算机科学 互联网隐私 哲学
作者
Xingyu Ken Chen,Jin‐Cheon Na
出处
期刊:Social Science Computer Review [SAGE Publishing]
标识
DOI:10.1177/08944393251338403
摘要

Information disorder (IDO) presents a persistent challenge to society, necessitating innovative approaches to understanding its dynamics beyond just merely detecting it. This study introduces a theory-driven framework that integrates advanced natural language processing (NLP) with deep learning, utilizing the target-based emotion–stance analysis (TESA) approach to analyze emotion and stance dynamics within IDO content. Complementing TESA, interactive graph generation (IGG) is applied for scalable and interpretable qualitative analyses. Employing a mixed-methods approach, the study leverages TESA for target-centric emotion and stance analysis, evaluating target-based classifiers on both human-annotated and synthetic datasets. Additionally, the study explores synthetic data generation using generative AI to enrich the analysis, applying IGG to map complex data interactions. The study also found that integrating synthetic data developed from human annotations enhanced model performance, particularly for emotion classification tasks. Results demonstrate that IDO narratives significantly differ from non-IDO narratives, frequently leveraging negative emotions such as anger and disgust to manipulate public perception. TESA proved effective in capturing these nuanced variations, while IGG facilitated the triangulation of such findings via the scalable interpretation of emotional narratives, revealing that IDO content often amplifies polarizing and antagonistic perspectives. By combining TESA and IGG, this research emphasizes the importance of using NLP to extract and examine the emotional and stance nuances toward targets of interest within IDO context. This approach not only deepens theoretical insights into IDO’s persuasive mechanisms but also supports the development of practical tools for analyzing and managing the influence of IDO on public discourse.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桃花落完成签到,获得积分10
1秒前
JJ发布了新的文献求助10
2秒前
2秒前
Jack完成签到 ,获得积分10
4秒前
Jey发布了新的文献求助10
5秒前
KEHUGE完成签到,获得积分10
5秒前
SYLH应助syy采纳,获得10
7秒前
满意的友桃完成签到,获得积分20
7秒前
斯文败类应助唐文硕采纳,获得10
8秒前
科研通AI2S应助123123采纳,获得10
9秒前
研友_Z6W1b8发布了新的文献求助30
10秒前
Jey完成签到,获得积分10
11秒前
12秒前
13秒前
先一完成签到 ,获得积分10
15秒前
唐文硕完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
Jack发布了新的文献求助10
17秒前
17秒前
17秒前
stultus完成签到,获得积分10
17秒前
Fiona发布了新的文献求助10
18秒前
KKK研发布了新的文献求助10
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助150
21秒前
个木发布了新的文献求助10
21秒前
毕业就集采的苦命人完成签到 ,获得积分10
21秒前
杨冰发布了新的文献求助10
22秒前
24秒前
howgoods完成签到 ,获得积分10
24秒前
Jerry完成签到,获得积分10
25秒前
JamesPei应助个木采纳,获得10
26秒前
26秒前
27秒前
冷艳寒梦发布了新的文献求助10
27秒前
JZ133发布了新的文献求助20
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864604
求助须知:如何正确求助?哪些是违规求助? 3406976
关于积分的说明 10652259
捐赠科研通 3130961
什么是DOI,文献DOI怎么找? 1726714
邀请新用户注册赠送积分活动 831961
科研通“疑难数据库(出版商)”最低求助积分说明 780064