A Unified Optimal Transport Framework for Cross-Modal Retrieval With Noisy Labels

情态动词 计算机科学 人工智能 化学 高分子化学
作者
Haochen Han,Minnan Luo,Huan Liu,芳恵 楠,Jun Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (9): 16435-16448 被引量:1
标识
DOI:10.1109/tnnls.2025.3559533
摘要

Cross-modal retrieval (CMR) aims to establish interaction between different modalities, among which supervised CMR is emerging due to its flexibility in learning semantic category discrimination. Despite the remarkable performance of previous supervised CMR methods, much of their success can be attributed to the well-annotated data. However, even for unimodal data, precise annotation is expensive and time-consuming, and it becomes more challenging with the multimodal scenario. In practice, massive multimodal data are collected from the Internet with coarse annotation, which inevitably introduces noisy labels. Training with such misleading labels would bring two key challenges-enforcing the multimodal samples to align incorrect semantics and widen the heterogeneous gap, resulting in poor retrieval performance. To tackle these challenges, this work proposes UOT-RCL, a unified framework based on optimal transport (OT) for robust CMR. First, we propose a semantic alignment based on partial OT to progressively correct the noisy labels, where a novel cross-modal consistent cost function is designed to blend different modalities and provide precise transport cost. Second, to narrow the discrepancy in multimodal data, an OT-based relation alignment is proposed to infer the semantic-level cross-modal matching. Both of these components leverage the inherent correlation among multimodal data to facilitate effective cost function. The experiments on three widely used CMR datasets demonstrate that our UOT-RCL surpasses the state-of-the-art approaches and significantly improves the robustness against noisy labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠楠发布了新的文献求助10
刚刚
清脆如天关注了科研通微信公众号
1秒前
cookingmouse发布了新的文献求助10
2秒前
2秒前
露露完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
姜博超完成签到,获得积分20
4秒前
5秒前
ohh完成签到,获得积分10
5秒前
zzz2193发布了新的文献求助10
5秒前
OYYO完成签到,获得积分10
5秒前
6秒前
6秒前
ChungZ发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
充电宝应助lele采纳,获得10
9秒前
英姑应助lele采纳,获得10
9秒前
小马甲应助lele采纳,获得10
9秒前
烟花应助lele采纳,获得10
9秒前
10秒前
思源应助lk采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Mt发布了新的文献求助10
10秒前
福尔摩琪完成签到,获得积分10
11秒前
李健的小迷弟应助lixm采纳,获得10
12秒前
13秒前
852应助nihao采纳,获得10
14秒前
研小咩发布了新的文献求助10
14秒前
高兴依凝发布了新的文献求助20
15秒前
清脆如天发布了新的文献求助50
16秒前
无望幽月完成签到,获得积分10
16秒前
LL发布了新的文献求助10
16秒前
111完成签到,获得积分10
16秒前
虚心的阿松完成签到,获得积分10
17秒前
健壮雪糕发布了新的文献求助10
19秒前
斯文败类应助HZH采纳,获得10
19秒前
对对队完成签到,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277