Granule Margin-Based Feature Selection in Weighted Neighborhood Systems

特征选择 边距(机器学习) 模式识别(心理学) 颗粒(地质) 人工智能 计算机科学 选择(遗传算法) 数学 生物 机器学习 古生物学
作者
Can Gao,Jie Zhou,Xizhao Wang,Witold Pedrycz
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcyb.2025.3544693
摘要

Neighborhood rough sets are an effective model for handling numerical and categorical data entangled with vagueness, imprecision, or uncertainty. However, existing neighborhood rough set models and their feature selection methods treat each sample equally, whereas different types of samples inherently play different roles in constructing neighborhood granules and evaluating the goodness of features. In this study, the sample weight information is first introduced into neighborhood rough sets, and a novel weighted neighborhood rough set model is consequently constructed. Then, considering the lack of sample weight information in practical data, a margin-based weight optimization function is designed, based on which a gradient descent algorithm is provided to adaptively learn sample weights through maximizing sample margins. Finally, an average granule margin measure is put forward for feature selection, and a forward-adding heuristic algorithm is developed to generate an optimal feature subset. The proposed method constructs the weighted neighborhood rough sets using sample weights for the first time and is able to yield compact feature subsets with a large margin. Extensive experiments and statistical analysis on UCI datasets show that the proposed method achieves highly competitive performance in terms of feature reduction rate and classification accuracy when compared with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan完成签到,获得积分10
2秒前
2秒前
dddd完成签到 ,获得积分10
3秒前
lishunzcqty发布了新的文献求助50
4秒前
ZZzz完成签到 ,获得积分10
6秒前
狗剩子完成签到,获得积分10
6秒前
善良的火完成签到 ,获得积分10
7秒前
design完成签到,获得积分10
8秒前
jessie发布了新的文献求助20
9秒前
求知完成签到,获得积分10
9秒前
Li应助souvenir采纳,获得10
10秒前
zhoahai完成签到 ,获得积分10
10秒前
sxd完成签到,获得积分10
11秒前
brick2024完成签到,获得积分10
12秒前
moon完成签到 ,获得积分10
12秒前
XIA完成签到 ,获得积分10
12秒前
lishunzcqty完成签到,获得积分10
15秒前
666完成签到,获得积分10
17秒前
小马哥完成签到,获得积分10
21秒前
zhuo完成签到,获得积分10
21秒前
个性书翠应助张龙雨采纳,获得10
23秒前
24秒前
yar完成签到 ,获得积分10
26秒前
乾明少侠完成签到 ,获得积分10
28秒前
爱科研的小虞完成签到 ,获得积分10
30秒前
1b完成签到,获得积分10
32秒前
lielizabeth完成签到 ,获得积分0
33秒前
皮老八完成签到 ,获得积分10
33秒前
dior完成签到 ,获得积分10
36秒前
rumengzhuo完成签到,获得积分10
38秒前
wenbo完成签到,获得积分10
39秒前
001发布了新的文献求助10
40秒前
jessie完成签到,获得积分10
41秒前
42秒前
user001完成签到,获得积分10
44秒前
47秒前
scm应助zj采纳,获得30
47秒前
Bear完成签到,获得积分10
51秒前
52秒前
海的海完成签到 ,获得积分10
52秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843307
求助须知:如何正确求助?哪些是违规求助? 3385613
关于积分的说明 10540918
捐赠科研通 3106201
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308