Pseudo-Contrast-Enhanced US via Enhanced Generative Adversarial Networks for Evaluating Tumor Ablation Efficacy

威尔科克森符号秩检验 烧蚀 医学 人工智能 相关性 深度学习 对比度(视觉) 计算机科学 放射科 医学物理学 数学 曼惠特尼U检验 内科学 几何学
作者
Chen Chen,Jiabin Yu,Zhikang Xu,Changsong Xu,Zubang Zhou,J H Hao,Vicky Y. Wang,Jincao Yao,Lingyan Zhou,Chenke Xu,Mei Song,Qi Zhang,Xiaofang Liu,Sui Lin,Yuqi Yan,Jiang Tian,Yahan Zhou,Yuanfei Wu,Binggang Xiao,Chenjie Xu
出处
期刊:Radiology [Radiological Society of North America]
被引量:1
标识
DOI:10.1148/ryai.240370
摘要

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a methodology for creating pseudo-contrast-enhanced US (CEUS) using an enhanced generative adversarial network and evaluate its ability to assess tumor ablation effectiveness. Materials and Methods This retrospective study included 1,030 patients who underwent thyroid nodule ablation across seven centers from January 2020 to April 2023. A generative adversarial network-based model was developed for direct pseudo-CEUS generation from B-mode US and tested on thyroid, breast, and liver ablation datasets. The reliability of pseudo-CEUS was assessed using Structural Similarity Index (SSIM), Color Histogram Correlation (CHC), and Mean Absolute Percentage Error (MAPE) against real CEUS. Additionally, a subjective evaluation system was devised to validate its clinical value. The Wilcoxon signed-rank test was employed to analyze differences in the data. Results The study included 1,030 patients (mean age, 46.9 years ± 12.5; 799 females and 231 males). For internal test set 1, the mean SSIM was 0.89 ± 0.05, while across external test sets 1-6, mean SSIM values ranged from 0.84 ± 0.08 to 0.88 ± 0.04. Subjective assessments affirmed the method's stability and near-realistic performance in evaluating ablation effectiveness. The thyroid ablation datasets had an average identification score of 0.49 (0.5 indicates indistinguishability), while the similarity average score for all datasets was 4.75 out of 5. Radiologists' assessments of residual blood supply were nearly consistent, with no differences in defining ablation zones between real and pseudo-CEUS. Conclusion The pseudo-CEUS method demonstrated high similarity to real CEUS in evaluating tumor ablation effectiveness. Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
悠然完成签到,获得积分10
1秒前
1秒前
碧海星空完成签到,获得积分20
1秒前
zhaolee完成签到 ,获得积分10
2秒前
xavier完成签到 ,获得积分10
2秒前
李爱国应助DKL采纳,获得10
3秒前
酷波er应助老鱼吹浪采纳,获得10
3秒前
XP完成签到 ,获得积分10
3秒前
情怀应助畅快的白枫采纳,获得10
3秒前
歪比巴啵完成签到,获得积分10
3秒前
Akim应助随风。采纳,获得10
4秒前
夏晴晴完成签到,获得积分10
4秒前
七七发布了新的文献求助10
4秒前
Dskelf完成签到,获得积分10
4秒前
幽默尔蓝发布了新的文献求助10
5秒前
碧海星空发布了新的文献求助10
5秒前
yys完成签到 ,获得积分10
6秒前
6秒前
innyjiang完成签到,获得积分10
7秒前
Yan0909完成签到,获得积分10
7秒前
十月完成签到 ,获得积分10
8秒前
8秒前
科研通AI5应助洋123采纳,获得10
8秒前
LiChard发布了新的文献求助10
8秒前
8秒前
传奇3应助大劲采纳,获得10
9秒前
dyw完成签到,获得积分10
10秒前
魔幻之云完成签到 ,获得积分10
10秒前
慕青应助杨123采纳,获得10
10秒前
小二郎应助可乐土豆饼采纳,获得10
11秒前
初雪发布了新的文献求助10
12秒前
海鲜汤完成签到,获得积分10
12秒前
allglitters完成签到,获得积分10
12秒前
13秒前
Shinka发布了新的文献求助30
13秒前
14秒前
桃花依旧完成签到,获得积分10
15秒前
15秒前
EgbertW完成签到,获得积分10
16秒前
高分求助中
Organic Chemistry 30086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4296266
求助须知:如何正确求助?哪些是违规求助? 3822020
关于积分的说明 11965989
捐赠科研通 3464062
什么是DOI,文献DOI怎么找? 1900013
邀请新用户注册赠送积分活动 948095
科研通“疑难数据库(出版商)”最低求助积分说明 850653