Pseudo-Contrast-Enhanced US via Enhanced Generative Adversarial Networks for Evaluating Tumor Ablation Efficacy

威尔科克森符号秩检验 烧蚀 医学 人工智能 相关性 深度学习 对比度(视觉) 计算机科学 放射科 医学物理学 数学 曼惠特尼U检验 内科学 几何学
作者
Chen Chen,Jiabin Yu,Zhikang Xu,Changsong Xu,Zubang Zhou,J H Hao,Vicky Y. Wang,Jincao Yao,Lingyan Zhou,Chenke Xu,Mei Song,Qi Zhang,Xiaofang Liu,Sui Lin,Yuqi Yan,Jiang Tian,Yahan Zhou,Yuanfei Wu,Binggang Xiao,Chenjie Xu
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240370
摘要

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a methodology for creating pseudo-contrast-enhanced US (CEUS) using an enhanced generative adversarial network and evaluate its ability to assess tumor ablation effectiveness. Materials and Methods This retrospective study included 1,030 patients who underwent thyroid nodule ablation across seven centers from January 2020 to April 2023. A generative adversarial network-based model was developed for direct pseudo-CEUS generation from B-mode US and tested on thyroid, breast, and liver ablation datasets. The reliability of pseudo-CEUS was assessed using Structural Similarity Index (SSIM), Color Histogram Correlation (CHC), and Mean Absolute Percentage Error (MAPE) against real CEUS. Additionally, a subjective evaluation system was devised to validate its clinical value. The Wilcoxon signed-rank test was employed to analyze differences in the data. Results The study included 1,030 patients (mean age, 46.9 years ± 12.5; 799 females and 231 males). For internal test set 1, the mean SSIM was 0.89 ± 0.05, while across external test sets 1-6, mean SSIM values ranged from 0.84 ± 0.08 to 0.88 ± 0.04. Subjective assessments affirmed the method's stability and near-realistic performance in evaluating ablation effectiveness. The thyroid ablation datasets had an average identification score of 0.49 (0.5 indicates indistinguishability), while the similarity average score for all datasets was 4.75 out of 5. Radiologists' assessments of residual blood supply were nearly consistent, with no differences in defining ablation zones between real and pseudo-CEUS. Conclusion The pseudo-CEUS method demonstrated high similarity to real CEUS in evaluating tumor ablation effectiveness. Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
某只橘猫君完成签到,获得积分10
2秒前
打打应助单纯的雅香采纳,获得80
5秒前
5秒前
yunsww完成签到,获得积分10
7秒前
zzzdes发布了新的文献求助10
9秒前
GH发布了新的文献求助10
10秒前
10秒前
田様应助灵巧忆南采纳,获得10
11秒前
12秒前
13秒前
13秒前
14秒前
动漫大师发布了新的文献求助10
15秒前
17秒前
东伯雪鹰发布了新的文献求助10
17秒前
18秒前
13333发布了新的文献求助10
19秒前
20秒前
搜集达人应助聪明的梦山采纳,获得10
20秒前
闪闪的妙竹完成签到 ,获得积分10
27秒前
27秒前
打老虎完成签到,获得积分10
27秒前
甜甜纲手完成签到,获得积分10
29秒前
ayayaya完成签到 ,获得积分10
31秒前
科研小李完成签到,获得积分10
31秒前
彪壮的青槐完成签到,获得积分10
33秒前
33秒前
科目三应助英俊的丹亦采纳,获得10
33秒前
田様应助月如钩采纳,获得10
35秒前
35秒前
科研通AI2S应助碎米花采纳,获得10
37秒前
等你下课完成签到 ,获得积分10
37秒前
38秒前
39秒前
shiqi完成签到,获得积分10
40秒前
cndxh完成签到 ,获得积分10
41秒前
震动的沉鱼完成签到 ,获得积分10
42秒前
123发布了新的文献求助10
43秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776338
求助须知:如何正确求助?哪些是违规求助? 3321773
关于积分的说明 10207718
捐赠科研通 3037092
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870