已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing CT image segmentation accuracy through ensemble loss function optimization

人工智能 医学影像学 图像分割 计算机视觉 计算机科学 计算机断层摄影术 分割 图像(数学) 功能(生物学) 模式识别(心理学) 放射科 医学 进化生物学 生物
作者
Chengyin Li,Rafi Ibn Sultan,Hassan Bagher‐Ebadian,Qiang Yao,Kundan Thind,Dongxiao Zhu,Indrin J. Chetty
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17848
摘要

In CT-based medical image segmentation, the choice of loss function profoundly impacts the training efficacy of deep neural networks. Traditional loss functions like cross entropy (CE), Dice, Boundary, and TopK each have unique strengths and limitations, often introducing biases when used individually. This study aims to enhance segmentation accuracy by optimizing ensemble loss functions, thereby addressing the biases and limitations of single loss functions and their linear combinations. We implemented a comprehensive evaluation of loss function combinations by integrating CE, Dice, Boundary, and TopK loss functions through both loss-level linear combination and model-level ensemble methods. Our approach utilized two state-of-the-art 3D segmentation architectures, Attention U-Net (AttUNet) and SwinUNETR, to test the impact of these methods. The study was conducted on two large CT dataset cohorts: an institutional dataset containing pelvic organ segmentations, and a public dataset consisting of multiple organ segmentations. All the models were trained from scratch with different loss settings, and performance was evaluated using Dice similarity coefficient (DSC), Hausdorff distance (HD), and average surface distance (ASD). In the ensemble approach, both static averaging and learnable dynamic weighting strategies were employed to combine the outputs of models trained with different loss functions. Extensive experiments revealed the following: (1) the linear combination of loss functions achieved results comparable to those of single loss-driven methods; (2) compared to the best non-ensemble methods, ensemble-based approaches resulted in a 2%-7% increase in DSC scores, along with notable reductions in HD (e.g., a 19.1% reduction for rectum segmentation using SwinUNETR) and ASD (e.g., a 49.0% reduction for prostate segmentation using AttUNet); (3) the learnable ensemble approach with optimized weights produced finer details in predicted masks, as confirmed by qualitative analyses; and (4) the learnable ensemble consistently outperforms the static ensemble across most metrics (DSC, HD, ASD) for both AttUNet and SwinUNETR architectures. Our findings support the efficacy of using ensemble models with optimized weights to improve segmentation accuracy, highlighting the potential for broader applications in automated medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjoy完成签到 ,获得积分10
刚刚
刚刚
丸子完成签到 ,获得积分10
3秒前
3秒前
nenoaowu完成签到,获得积分10
3秒前
LinglongCai完成签到 ,获得积分10
5秒前
123y完成签到,获得积分20
5秒前
祁笑言发布了新的文献求助10
5秒前
Davidjin完成签到,获得积分10
7秒前
JL完成签到,获得积分10
7秒前
nenoaowu发布了新的文献求助10
7秒前
8秒前
8秒前
yangzai完成签到 ,获得积分10
9秒前
无糖零脂发布了新的文献求助10
11秒前
喬老師发布了新的文献求助10
11秒前
11秒前
祁笑言完成签到,获得积分10
12秒前
12秒前
可爱的函函应助欣慰元蝶采纳,获得10
13秒前
隐形曼青应助Wxc采纳,获得10
14秒前
酷酷雨梅完成签到 ,获得积分10
15秒前
kxy完成签到,获得积分10
16秒前
小尧发布了新的文献求助10
17秒前
小文cremen完成签到 ,获得积分10
17秒前
奥米希完成签到,获得积分10
17秒前
战晓完成签到,获得积分10
17秒前
能干的阿拉蕾完成签到 ,获得积分10
18秒前
gjx完成签到 ,获得积分10
18秒前
峰妹完成签到 ,获得积分10
19秒前
djbj2022发布了新的文献求助10
19秒前
orixero应助小尧采纳,获得10
21秒前
资明轩完成签到,获得积分10
22秒前
大力三问完成签到 ,获得积分20
23秒前
24秒前
cy完成签到,获得积分10
24秒前
25秒前
追梦人完成签到 ,获得积分10
25秒前
qiu完成签到 ,获得积分10
29秒前
旧城以西发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693981
求助须知:如何正确求助?哪些是违规求助? 4064621
关于积分的说明 12567719
捐赠科研通 3763149
什么是DOI,文献DOI怎么找? 2078305
邀请新用户注册赠送积分活动 1106698
科研通“疑难数据库(出版商)”最低求助积分说明 984894