Selection of Optimal Diagnostic Positions for Early Nutrient Deficiency in Cucumber Leaves Based on Spatial Distribution of Raman Spectra

相似性(几何) 营养物 拉曼光谱 数学 模式识别(心理学) 计算机科学 生物系统 人工智能 生物 生态学 物理 图像(数学) 光学
作者
Zhaoyuan Hou,Yaxuan Wang,Feng Tan,Jiadong Gao,Feng Jiao,Chunjie Su,Xin Zheng
出处
期刊:Plants [Multidisciplinary Digital Publishing Institute]
卷期号:14 (8): 1199-1199
标识
DOI:10.3390/plants14081199
摘要

Accurate diagnosis of crop nutritional status is critical for optimizing yield and quality in modern agriculture. This study enhances the accuracy of Raman spectroscopy-based nutrient diagnosis, improving its application in precision agriculture. We propose a method to identify optimal diagnostic positions on cucumber leaves for early detection of nitrogen (N), phosphorus (P), and potassium (K) deficiencies, thereby providing a robust scientific basis for high-throughput phenotyping using Raman spectroscopy (RS). Using a dot-matrix approach, we collected RS data across different leaf positions and explored the selection of diagnostic positions through spectral cosine similarity analysis. These results provide critical insights for developing rapid, non-destructive methods for nutrient stress monitoring in crops. Results show that spectral similarity across positions exhibits higher instability during the early developmental stages of leaves or under short-term (24 h) nutrient stress, with significant differences in the stability of spectral data among treatment groups. However, visual analysis of the spatial distribution of positions with lower similarity values reveals consistent spectral similarity distribution patterns across different treatment groups, with the lower similarity values predominantly observed at the leaf margins, near the main veins, and at the leaf base. Excluding low-similarity data significantly improved model performance for early (24 h) nutrient deficiency diagnosis, resulting in higher precision, recall, and F1 scores. Based on these results, the efficacy of the proposed method for selecting diagnostic positions has been validated. It is recommended to avoid collecting RS data from areas near the leaf margins, main veins, and the leaf base when diagnosing early nutrient deficiencies in plants to enhance diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助zgaolei采纳,获得10
2秒前
烟花应助silin采纳,获得10
2秒前
小马儿发布了新的文献求助10
2秒前
超级的涵山完成签到,获得积分10
3秒前
mmr发布了新的文献求助10
3秒前
3秒前
Jasper应助无奈的鞋子采纳,获得10
4秒前
Kz发布了新的文献求助10
4秒前
科研通AI2S应助甄晓溪采纳,获得10
4秒前
柚子和棉花完成签到,获得积分10
5秒前
5秒前
天天完成签到,获得积分10
5秒前
桐桐应助Cynthia采纳,获得10
5秒前
FashionBoy应助谨慎向南采纳,获得10
7秒前
8秒前
8秒前
8秒前
科研通AI5应助man采纳,获得10
9秒前
10秒前
丿淘丶Tao丨完成签到,获得积分10
10秒前
Hase完成签到 ,获得积分10
11秒前
科研通AI5应助吴家豪采纳,获得10
11秒前
11秒前
13秒前
俭朴山灵完成签到 ,获得积分10
13秒前
14秒前
15秒前
silin发布了新的文献求助10
15秒前
Pxb完成签到,获得积分10
15秒前
16秒前
鹿友菌发布了新的文献求助10
18秒前
上官若男应助元山柏采纳,获得10
18秒前
Cynthia发布了新的文献求助10
19秒前
甄晓溪完成签到,获得积分20
19秒前
爆米花应助Kz采纳,获得10
21秒前
丫丫发布了新的文献求助10
22秒前
bit0发布了新的文献求助30
23秒前
单于无极完成签到,获得积分10
23秒前
林生完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978174
求助须知:如何正确求助?哪些是违规求助? 4231199
关于积分的说明 13178705
捐赠科研通 4021946
什么是DOI,文献DOI怎么找? 2200483
邀请新用户注册赠送积分活动 1212958
关于科研通互助平台的介绍 1129258