亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Suicidal Ideation Among Youths With Autism Spectrum Disorder: An Advanced Machine Learning Study

自闭症谱系障碍 自杀意念 逻辑回归 焦虑 随机森林 心理学 接收机工作特性 临床心理学 自闭症 精神科 机器学习 毒物控制 医学 伤害预防 内科学 环境卫生 计算机科学
作者
Hussein Alsrehan,Mohammad Nayef Ayasrah,Ayoub Hamdan Al‐Rousan,Mohamad Ahmad Saleem Khasawneh,Mahmoud Gharaibeh
出处
期刊:Clinical Psychology & Psychotherapy [Wiley]
卷期号:32 (3)
标识
DOI:10.1002/cpp.70082
摘要

ABSTRACT This study aimed to predict suicidal ideation among youth with autism spectrum disorder (ASD) by applying machine learning techniques. A cross‐sectional sample of 368 ASD‐diagnosed young people (aged 18–24 years) was recruited, and 34 candidate predictors—including sociodemographic characteristics, psychiatric symptoms (e.g., anxiety problems and depressive symptoms), behavioural measures (e.g., bullying victimization and insomnia severity) and adverse childhood experiences—were assessed using standardized instruments and parent‐report checklists. After listwise deletion of missing data, recursive feature elimination (RFE) with a random forest wrapper was performed to identify the five most influential predictors. Four classification algorithms (logistic regression, random forest, eXtreme Gradient Boosting [XGBoost] and support vector machine [SVM]) were then trained on a 70/30 stratified split and evaluated on the hold‐out test set using area under the curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value and accuracy. RFE identified anxiety problems, insomnia, bullying victimization, age and depression (PHQ‐9) as the top predictors. Logistic regression achieved an AUC of 0.943 (sensitivity = 0.773, specificity = 0.957 and accuracy = 0.922), random forest an AUC of 0.948 (sensitivity = 0.727, specificity = 0.989 and accuracy = 0.939), XGBoost an AUC of 0.930 (sensitivity = 0.772, specificity = 0.989 and accuracy = 0.947) and SVM an AUC of 0.942 (sensitivity = 0.772, specificity = 0.978 and accuracy = 0.939). Across models, anxiety and insomnia emerged as the two most important risk factors, and XGBoost demonstrated the best overall balance of performance metrics, yielding the highest accuracy. Gradient‐boosted tree models were thus shown to effectively integrate multidimensional data to predict suicidality in autistic youth, highlighting anxiety and sleep disturbances as critical targets for personalized risk assessment and prevention efforts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彩色的芷容完成签到 ,获得积分10
5秒前
14秒前
hyxiaoren发布了新的文献求助10
19秒前
xiao金完成签到,获得积分10
39秒前
天天快乐应助hyxiaoren采纳,获得30
54秒前
hyxiaoren完成签到,获得积分10
1分钟前
情怀应助烨枫晨曦采纳,获得10
1分钟前
丘比特应助woods采纳,获得10
1分钟前
1分钟前
1分钟前
烨枫晨曦发布了新的文献求助10
1分钟前
woods发布了新的文献求助10
1分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
qianchang完成签到,获得积分10
3分钟前
3分钟前
顾矜应助王其超采纳,获得10
3分钟前
4分钟前
王其超完成签到,获得积分10
4分钟前
王其超发布了新的文献求助10
4分钟前
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
zhen发布了新的文献求助10
4分钟前
善学以致用应助JT采纳,获得10
5分钟前
5分钟前
JT发布了新的文献求助10
5分钟前
5分钟前
铭铭铭发布了新的文献求助10
5分钟前
Ava应助铭铭铭采纳,获得10
6分钟前
JT完成签到,获得积分10
6分钟前
jessie完成签到 ,获得积分10
6分钟前
Hello应助黑羽采纳,获得30
6分钟前
小白菜完成签到,获得积分10
7分钟前
隐形曼青应助科研通管家采纳,获得10
8分钟前
8分钟前
黑羽完成签到,获得积分20
8分钟前
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847676
求助须知:如何正确求助?哪些是违规求助? 3390385
关于积分的说明 10561491
捐赠科研通 3110719
什么是DOI,文献DOI怎么找? 1714498
邀请新用户注册赠送积分活动 825259
科研通“疑难数据库(出版商)”最低求助积分说明 775436