Local–Global Structure-Aware Geometric Equivariant Graph Representation Learning for Predicting Protein–Ligand Binding Affinity

等变映射 图形 代表(政治) 配体(生物化学) 数学 化学 计算机科学 纯数学 组合数学 生物化学 受体 政治学 政治 法学
作者
Shihong Chen,Hai-Cheng Yi,Zhu‐Hong You,Xuequn Shang,Yu‐An Huang,Lei Wang,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3547300
摘要

Predicting protein-ligand binding affinities is a critical problem in drug discovery and design. A majority of existing methods fail to accurately characterize and exploit the geometrically invariant structures of protein-ligand complexes for predicting binding affinities. In this study, we propose Geo-protein-ligand binding affinity (PLA), a geometric equivariant graph representation learning framework with local-global structure awareness, to predict binding affinity by capturing the geometric information of protein-ligand complexes. Specifically, the local structural information of 3-D protein-ligand complexes is extracted by using an equivariant graph neural network (EGNN), which iteratively updates node representations while preserving the equivariance of coordinate transformations. Meanwhile, a graph transformer is utilized to capture long-range interactions among atoms, offering a global view that adaptively focuses on complex regions with a significant impact on binding affinities. Furthermore, the multiscale information from the two channels is integrated to enhance the predictive capability of the model. Extensive experimental studies on two benchmark datasets confirm the superior performance of Geo-PLA. Moreover, the visual interpretation of the learned protein-ligand complexes further indicates that our model offers valuable biological insights for virtual screening and drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
aaronpancn完成签到,获得积分10
5秒前
6秒前
6秒前
paramecium发布了新的文献求助10
6秒前
小二郎应助薛妖怪采纳,获得10
7秒前
hanleiharry1发布了新的文献求助10
7秒前
张英俊完成签到,获得积分20
7秒前
8秒前
9秒前
张英俊发布了新的文献求助10
11秒前
Akim应助豆豆采纳,获得10
12秒前
Lucas应助忧郁的夏岚采纳,获得30
13秒前
13秒前
17秒前
19秒前
研友_Y59785应助科研通管家采纳,获得10
19秒前
19秒前
研友_Y59785应助科研通管家采纳,获得10
19秒前
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
研友_Y59785应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
锦鲤发布了新的文献求助10
20秒前
爆米花应助阳光的晓夏采纳,获得10
21秒前
薛妖怪发布了新的文献求助10
22秒前
深情安青应助AQI采纳,获得10
23秒前
23秒前
paramecium完成签到,获得积分10
24秒前
27秒前
无花果应助元海云采纳,获得10
27秒前
大个应助忧郁的夏岚采纳,获得10
28秒前
Quinta发布了新的文献求助10
30秒前
充电宝应助薛妖怪采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923523
求助须知:如何正确求助?哪些是违规求助? 3468321
关于积分的说明 10951619
捐赠科研通 3197473
什么是DOI,文献DOI怎么找? 1766569
邀请新用户注册赠送积分活动 856325
科研通“疑难数据库(出版商)”最低求助积分说明 795395