Intervention of machine learning and explainable artificial intelligence based polynomial transformation approach for improved measurement of oil-water emulsion using FBG sensor

乳状液 转化(遗传学) 材料科学 干预(咨询) 多项式的 人工智能 计算机科学 工艺工程 化学工程 数学 数学分析 工程类 心理学 生物化学 化学 精神科 基因
作者
Yogendra Swaroop Dwivedi,Rishav Singh,Anuj K. Sharma,Ajay Kumar Sharma,Carlos Marques
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:100 (7): 076005-076005
标识
DOI:10.1088/1402-4896/addef5
摘要

Abstract This study focuses on the application of polynomial transformations in combination with machine learning (ML) and explainable artificial intelligence (XAI) techniques to analyze tilted fiber Bragg grating (TFBG) sensor data for oil–water emulsion stability. The dataset consisting of experimental TFBG spectra (wavelength range: 1250–1650 nm) included parameters such as revolutions per minute (RPM) of the rotator, surfactant concentration (C s ), and area (indicating emulsion stability). To enhance the feature space and enable detailed analysis of parameter interactions, polynomial transformations of degree 2 were applied. This transformation provided a new dimension of study, facilitating the exploration of complex relationships in the data. Machine learning models, including linear regression and Random Forest regression, were tested on the polynomial-transformed features, with the latter achieving a high R 2 value of 99.2%. XAI techniques, particularly SHAP analysis, were used to quantify feature contribution of each individual feature (i.e., RPM and C s ), and their polynomials (i.e., RPM 2 , C s 2 , and RPM × C s ). The results revealed that C s had a significantly greater impact on emulsion stability than other parameters. Subsequently, light wavelength ( λ ) was included in the ML and XAI analyses leading to more possible combinations of polynomials (i.e., C s 2 , RPM 2 , λ 2 , C s × λ , RPM × λ , and RPM × C s ). The results re-affirmed the influence of C s on emulsion stability. Further, the combination C s × λ outperforms all other combinations. This outcome was explained in terms of spectral dependence of absorbance combined with the Beer–Lambert law. The study highlights the utility of polynomial transformations in enhancing feature representation and interpretability, offering insights for optimizing parameters and processes in crude oil emulsion stabilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingmin应助内向寒云采纳,获得30
刚刚
1s发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
pgh.hh完成签到 ,获得积分10
2秒前
yy发布了新的文献求助10
2秒前
akun发布了新的文献求助30
2秒前
WY完成签到,获得积分10
3秒前
3秒前
4秒前
隐形曼青应助影子采纳,获得10
5秒前
量子星尘发布了新的文献求助150
6秒前
Lucas应助满意的晓啸采纳,获得10
7秒前
Zhengyn发布了新的文献求助10
8秒前
田様应助王伟毅采纳,获得10
9秒前
10秒前
小小何发布了新的文献求助10
11秒前
11秒前
Willow完成签到,获得积分10
11秒前
11秒前
爆米花应助yy采纳,获得10
12秒前
微醺潮汐发布了新的文献求助30
13秒前
Xxw完成签到,获得积分10
13秒前
14秒前
15秒前
轻松的GIGI完成签到,获得积分10
15秒前
科研通AI6应助STNZEN采纳,获得10
16秒前
科研通AI5应助zkb采纳,获得10
16秒前
李爱国应助kern采纳,获得10
17秒前
量子星尘发布了新的文献求助50
18秒前
樱桃完成签到,获得积分10
18秒前
18秒前
拾诣发布了新的文献求助30
19秒前
打打应助lruri采纳,获得10
19秒前
影子发布了新的文献求助10
19秒前
嗯呢发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
苹果钟完成签到,获得积分10
22秒前
在水一方应助爱撞墙的猫采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663136
求助须知:如何正确求助?哪些是违规求助? 4045157
关于积分的说明 12512270
捐赠科研通 3737545
什么是DOI,文献DOI怎么找? 2063940
邀请新用户注册赠送积分活动 1093502
科研通“疑难数据库(出版商)”最低求助积分说明 974218