Intervention of machine learning and explainable artificial intelligence based polynomial transformation approach for improved measurement of oil-water emulsion using FBG sensor

乳状液 转化(遗传学) 材料科学 干预(咨询) 多项式的 人工智能 计算机科学 工艺工程 化学工程 数学 数学分析 工程类 心理学 精神科 基因 化学 生物化学
作者
Yogendra Swaroop Dwivedi,Rishav Singh,Anuj K. Sharma,Ajay Kumar Sharma,Carlos Marques
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:100 (7): 076005-076005
标识
DOI:10.1088/1402-4896/addef5
摘要

Abstract This study focuses on the application of polynomial transformations in combination with machine learning (ML) and explainable artificial intelligence (XAI) techniques to analyze tilted fiber Bragg grating (TFBG) sensor data for oil–water emulsion stability. The dataset consisting of experimental TFBG spectra (wavelength range: 1250–1650 nm) included parameters such as revolutions per minute (RPM) of the rotator, surfactant concentration (C s ), and area (indicating emulsion stability). To enhance the feature space and enable detailed analysis of parameter interactions, polynomial transformations of degree 2 were applied. This transformation provided a new dimension of study, facilitating the exploration of complex relationships in the data. Machine learning models, including linear regression and Random Forest regression, were tested on the polynomial-transformed features, with the latter achieving a high R 2 value of 99.2%. XAI techniques, particularly SHAP analysis, were used to quantify feature contribution of each individual feature (i.e., RPM and C s ), and their polynomials (i.e., RPM 2 , C s 2 , and RPM × C s ). The results revealed that C s had a significantly greater impact on emulsion stability than other parameters. Subsequently, light wavelength ( λ ) was included in the ML and XAI analyses leading to more possible combinations of polynomials (i.e., C s 2 , RPM 2 , λ 2 , C s × λ , RPM × λ , and RPM × C s ). The results re-affirmed the influence of C s on emulsion stability. Further, the combination C s × λ outperforms all other combinations. This outcome was explained in terms of spectral dependence of absorbance combined with the Beer–Lambert law. The study highlights the utility of polynomial transformations in enhancing feature representation and interpretability, offering insights for optimizing parameters and processes in crude oil emulsion stabilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DBY发布了新的文献求助10
刚刚
莉莉发布了新的文献求助10
刚刚
zh发布了新的文献求助30
刚刚
1秒前
杨阳洋完成签到 ,获得积分10
2秒前
华仔应助赫兹采纳,获得20
2秒前
科研通AI6应助九六采纳,获得30
2秒前
3秒前
科研通AI2S应助net80yhm采纳,获得10
4秒前
平静的小火锅完成签到,获得积分10
4秒前
5秒前
5秒前
小羊完成签到,获得积分10
6秒前
GsunW完成签到,获得积分10
7秒前
共享精神应助肥宅快乐水采纳,获得10
7秒前
yang完成签到,获得积分10
8秒前
韩佳璇完成签到,获得积分20
8秒前
Tingting完成签到,获得积分10
9秒前
研友_LJGGqn发布了新的文献求助10
9秒前
勇胜发布了新的文献求助10
9秒前
Ava应助glacial采纳,获得20
9秒前
英姑应助mine采纳,获得10
11秒前
12秒前
理理理理发布了新的文献求助10
12秒前
烟花应助mudiboyang采纳,获得10
12秒前
14秒前
15秒前
CC完成签到 ,获得积分10
15秒前
15秒前
16秒前
艾欧完成签到,获得积分10
16秒前
Cry_Man完成签到,获得积分10
17秒前
18秒前
18秒前
Raven应助shuang采纳,获得10
18秒前
研友_LJGGqn完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
Libra完成签到,获得积分10
19秒前
烟花应助望江饮月采纳,获得10
19秒前
Owen应助xwl采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317909
求助须知:如何正确求助?哪些是违规求助? 4460268
关于积分的说明 13877982
捐赠科研通 4350665
什么是DOI,文献DOI怎么找? 2389499
邀请新用户注册赠送积分活动 1383586
关于科研通互助平台的介绍 1353041