An Interpretable Neural Control Network With Adaptable Online Learning for Sample Efficient Robot Locomotion Learning

样品(材料) 人工神经网络 人工智能 计算机科学 控制(管理) 机器人 在线学习 机器学习 多媒体 色谱法 化学
作者
Arthicha Srisuchinnawong,Poramate Manoonpong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3552793
摘要

Robot locomotion learning using reinforcement learning suffers from training sample inefficiency and exhibits the non-interpretable/closed-box nature. Thus, this work presents a novel SME-Adaptable Gradient-weighting Online Learning (AGOL) to address such problems. First, sequential motion executor (SME) is a three-layer interpretable neural network, where the first produces the sequentially propagating hidden states, the second constructs the corresponding triangular bases with minor non-neighbor interference, and the third maps the bases to the motor commands. Second, the AGOL algorithm prioritizes the update of the parameters with high relevance score, allowing the learning to focus more on the highly relevant ones. Thus, these two components lead to an analyzable framework, where each sequential hidden state/basis represents the learned key poses/robot configuration. Compared to state-of-the-art methods, the SME-AGOL requires 40% fewer samples and receives 150% higher final reward/locomotion performance on a simulated hexapod robot, while taking merely 10 min of learning time from scratch on a physical hexapod robot. Taken together, this work not only proposes the SME-AGOL for sample efficient and understandable locomotion learning but also emphasizes the potential exploitation of interpretability for improving sample efficiency and learning performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sixone发布了新的文献求助10
1秒前
庞伟泽发布了新的文献求助10
2秒前
2秒前
小易同学发布了新的文献求助10
3秒前
3秒前
kik发布了新的文献求助10
4秒前
我们完成签到,获得积分10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
不想干活应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
nikuisi完成签到,获得积分10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
不想干活应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
不想干活应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
不想干活应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
斯文败类应助ly采纳,获得10
12秒前
无奈妖妖完成签到,获得积分10
12秒前
xia xianxin发布了新的文献求助10
12秒前
庞伟泽发布了新的文献求助10
14秒前
15秒前
小易同学完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550253
求助须知:如何正确求助?哪些是违规求助? 3980452
关于积分的说明 12323388
捐赠科研通 3649456
什么是DOI,文献DOI怎么找? 2009980
邀请新用户注册赠送积分活动 1045272
科研通“疑难数据库(出版商)”最低求助积分说明 933782