亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Air pollution and prostate cancer: Unraveling the connection through network toxicology and machine learning

前列腺癌 连接(主束) 毒理 污染 癌症 空气污染 环境科学 医学 生物 工程类 生态学 内科学 结构工程
作者
Yuqi Li,Tao Zhou,Zhiyu Liu,Xinyao Zhu,Qilong Wu,Chunyang Meng,Qingfu Deng
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:292: 117966-117966 被引量:1
标识
DOI:10.1016/j.ecoenv.2025.117966
摘要

In recent years, air pollution has been demonstrated to be associated with the occurrence of various diseases. This study aims to explore the potential association between air pollutants and prostate cancer (PCa) and to identify key genes that may play a critical bridging role in this process. This study utilized multiple online databases to obtain relevant target genes associated with air pollutants and PCa. Protein-protein interaction (PPI) analysis and visualization were conducted for the intersecting genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses to explore potential mechanisms. Subsequently, the best predictive model was selected through a combination of 108 machine learning algorithms. A prognostic model was constructed using the Random Survival Forest (RSF) model in conjunction with Lasso regression model, and its performance was validated in four external datasets. Finally, molecular docking analysis was conducted to investigate the interaction between key genes and air pollutants. Seven common air pollutants (benzene, SO₂, NO, CO, NO₂, toluene, and O₃) were selected for analysis, and 48 intersecting targets related to PCa were identified. GO and KEGG functional enrichment analyses revealed that these targets are primarily involved in regulating biological processes such as apoptosis, carcinogenesis, and cell proliferation. Based on machine learning algorithm selection, the combination of RSF and Lasso regression was identified as the optimal predictive model, which highlighted five key genes associated with air pollutants and PCa. The model exhibited strong predictive performance across all four independent external datasets. Additionally, molecular docking analysis further confirmed the potential interactions between air pollutants and these core targets. The findings suggest that HDAC6, CDK1, DNMT1, NOS3, and DPP4 play crucial roles in the process by which air pollutants influence PCa. The results offer new insights into the molecular mechanisms linking air pollutants and PCa, highlighting the need for greater public awareness of air pollution issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助felix采纳,获得30
6秒前
juan完成签到 ,获得积分10
13秒前
13秒前
snaf完成签到,获得积分10
14秒前
19秒前
26秒前
snaf发布了新的文献求助10
38秒前
1分钟前
1分钟前
小丸子完成签到 ,获得积分10
1分钟前
felix发布了新的文献求助30
1分钟前
科研通AI5应助felix采纳,获得30
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
zhzssaijj发布了新的文献求助10
2分钟前
笨笨山芙完成签到 ,获得积分10
2分钟前
firesquall完成签到,获得积分10
2分钟前
顾矜应助zhzssaijj采纳,获得10
2分钟前
光合作用完成签到,获得积分10
2分钟前
2分钟前
2分钟前
felix发布了新的文献求助30
2分钟前
2分钟前
2分钟前
华仔应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
幻影完成签到,获得积分10
3分钟前
4分钟前
隐形曼青应助felix采纳,获得30
4分钟前
4分钟前
Willy完成签到,获得积分10
4分钟前
4分钟前
4分钟前
幻影发布了新的文献求助20
4分钟前
传统的幻梦完成签到 ,获得积分10
5分钟前
NexusExplorer应助felix采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162295
求助须知:如何正确求助?哪些是违规求助? 3697813
关于积分的说明 11675069
捐赠科研通 3388441
什么是DOI,文献DOI怎么找? 1858134
邀请新用户注册赠送积分活动 918833
科研通“疑难数据库(出版商)”最低求助积分说明 831695