Air pollution and prostate cancer: Unraveling the connection through network toxicology and machine learning

前列腺癌 连接(主束) 毒理 污染 癌症 空气污染 环境科学 医学 生物 工程类 生态学 内科学 结构工程
作者
Yuqi Li,Tao Zhou,Zhiyu Liu,Xinyao Zhu,Qilong Wu,Chunyang Meng,Qingfu Deng
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:292: 117966-117966
标识
DOI:10.1016/j.ecoenv.2025.117966
摘要

In recent years, air pollution has been demonstrated to be associated with the occurrence of various diseases. This study aims to explore the potential association between air pollutants and prostate cancer (PCa) and to identify key genes that may play a critical bridging role in this process. This study utilized multiple online databases to obtain relevant target genes associated with air pollutants and PCa. Protein-protein interaction (PPI) analysis and visualization were conducted for the intersecting genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses to explore potential mechanisms. Subsequently, the best predictive model was selected through a combination of 108 machine learning algorithms. A prognostic model was constructed using the Random Survival Forest (RSF) model in conjunction with Lasso regression model, and its performance was validated in four external datasets. Finally, molecular docking analysis was conducted to investigate the interaction between key genes and air pollutants. Seven common air pollutants (benzene, SO₂, NO, CO, NO₂, toluene, and O₃) were selected for analysis, and 48 intersecting targets related to PCa were identified. GO and KEGG functional enrichment analyses revealed that these targets are primarily involved in regulating biological processes such as apoptosis, carcinogenesis, and cell proliferation. Based on machine learning algorithm selection, the combination of RSF and Lasso regression was identified as the optimal predictive model, which highlighted five key genes associated with air pollutants and PCa. The model exhibited strong predictive performance across all four independent external datasets. Additionally, molecular docking analysis further confirmed the potential interactions between air pollutants and these core targets. The findings suggest that HDAC6, CDK1, DNMT1, NOS3, and DPP4 play crucial roles in the process by which air pollutants influence PCa. The results offer new insights into the molecular mechanisms linking air pollutants and PCa, highlighting the need for greater public awareness of air pollution issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林qjr发布了新的文献求助20
7秒前
不懈奋进应助默默的鬼神采纳,获得60
7秒前
pazuzu完成签到,获得积分10
9秒前
科目三应助溶胶采纳,获得10
9秒前
11秒前
14秒前
Zz发布了新的文献求助10
15秒前
番茄炒蛋发布了新的文献求助10
15秒前
澄子完成签到 ,获得积分10
18秒前
星黛露发布了新的文献求助10
18秒前
19秒前
科研通AI5应助琪琪的采纳,获得10
20秒前
李健应助笑点低的文轩采纳,获得10
20秒前
Drjason驳回了Whim应助
20秒前
pluto应助加减乘除采纳,获得10
22秒前
guanze发布了新的文献求助10
24秒前
26秒前
Lina完成签到 ,获得积分10
27秒前
28秒前
feng完成签到,获得积分10
28秒前
吼吼完成签到,获得积分10
28秒前
28秒前
笑点低的文轩完成签到,获得积分20
29秒前
林qjr完成签到,获得积分10
29秒前
超级的紫菜完成签到 ,获得积分10
31秒前
31秒前
丘比特应助feng采纳,获得10
32秒前
mino发布了新的文献求助10
33秒前
川ccc完成签到,获得积分20
33秒前
苏苏苏发布了新的文献求助10
33秒前
orixero应助icecream采纳,获得10
33秒前
34秒前
木木三发布了新的文献求助10
35秒前
Richard完成签到,获得积分10
37秒前
39秒前
完美世界应助川ccc采纳,获得10
41秒前
41秒前
顾矜应助Asteria采纳,获得30
41秒前
完美世界应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959