Artificial intelligence alphafold model for molecular biology and drug discovery: a machine-learning-driven informatics investigation

药物发现 生物 信息学 计算生物学 人工智能 数据科学 机器学习 生物信息学 计算机科学 电气工程 工程类
作者
Song‐Bin Guo,Meng Yuan,Liteng Lin,Zhen-Zhong Zhou,Hailong Li,Xiao‐Peng Tian,Weijuan Huang
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:23 (1): 223-223 被引量:95
标识
DOI:10.1186/s12943-024-02140-6
摘要

AlphaFold model has reshaped biological research. However, vast unstructured data in the entire AlphaFold field requires further analysis to fully understand the current research landscape and guide future exploration. Thus, this scientometric analysis aimed to identify critical research clusters, track emerging trends, and highlight underexplored areas in this field by utilizing machine-learning-driven informatics methods. Quantitative statistical analysis reveals that the AlphaFold field is enjoying an astonishing development trend (Annual Growth Rate = 180.13%) and global collaboration (International Co-authorship = 33.33%). Unsupervised clustering algorithm, time series tracking, and global impact assessment point out that Cluster 3 (Artificial Intelligence-Powered Advancements in AlphaFold for Structural Biology) has the greatest influence (Average Citation = 48.36 ± 184.98). Additionally, regression curve and hotspot burst analysis highlight "structure prediction" (s = 12.40, R2 = 0.9480, p = 0.0051), "artificial intelligence" (s = 5.00, R2 = 0.8096, p = 0.0375), "drug discovery" (s = 1.90, R2 = 0.7987, p = 0.0409), and "molecular dynamics" (s = 2.40, R2 = 0.8000, p = 0.0405) as core hotspots driving the research frontier. More importantly, the Walktrap algorithm further reveals that "structure prediction, artificial intelligence, molecular dynamics" (Relevance Percentage[RP] = 100%, Development Percentage[DP] = 25.0%), "sars-cov-2, covid-19, vaccine design" (RP = 97.8%, DP = 37.5%), and "homology modeling, virtual screening, membrane protein" (RP = 89.9%, DP = 26.1%) are closely intertwined with the AlphaFold model but remain underexplored, which implies a broad exploration space. In conclusion, through the machine-learning-driven informatics methods, this scientometric analysis offers an objective and comprehensive overview of global AlphaFold research, identifying critical research clusters and hotspots while prospectively pointing out underexplored critical areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的冰棍关注了科研通微信公众号
1秒前
李爱国应助砼砼采纳,获得10
1秒前
时雨完成签到,获得积分10
1秒前
2秒前
独特黄豆完成签到,获得积分10
2秒前
Akim应助雪中采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
万能图书馆应助hengjiji采纳,获得10
8秒前
iris发布了新的文献求助200
8秒前
9秒前
武巧运完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
cookie发布了新的文献求助10
10秒前
CodeCraft应助haoliu采纳,获得30
11秒前
LIU发布了新的文献求助10
11秒前
Mkj1525关注了科研通微信公众号
11秒前
狂奔弟弟完成签到 ,获得积分10
12秒前
不敢自称科研人完成签到,获得积分10
13秒前
xinjie完成签到,获得积分10
14秒前
自觉嫣然完成签到,获得积分10
15秒前
李航完成签到,获得积分10
15秒前
15秒前
Unicorn完成签到,获得积分10
16秒前
黄少阳完成签到,获得积分10
16秒前
16秒前
子安发布了新的文献求助10
16秒前
小高完成签到,获得积分10
16秒前
16秒前
yue完成签到 ,获得积分10
16秒前
共享精神应助落后的海雪采纳,获得10
17秒前
ding应助岁月漫长采纳,获得10
17秒前
友好的芷雪完成签到,获得积分10
17秒前
浮游应助果果采纳,获得10
18秒前
大模型应助兴奋晓灵采纳,获得10
18秒前
gaogao完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312151
求助须知:如何正确求助?哪些是违规求助? 4455906
关于积分的说明 13864872
捐赠科研通 4344329
什么是DOI,文献DOI怎么找? 2385806
邀请新用户注册赠送积分活动 1380201
关于科研通互助平台的介绍 1348522