A systematic review of data augmentation methods for intelligent fault diagnosis of rotating machinery under limited data conditions

计算机科学 断层(地质) 可靠性工程 工程类 地质学 地震学
作者
Zedong Ju,Yinsheng Chen,Yukang Qiang,Xinyi Chen,Chao Ju,Jingli Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad7a97
摘要

Abstract In recent years, research on the intelligent fault diagnosis of rotating machinery has made remarkable progress, bringing considerable economic benefits to industrial production. However, in the industrial environment, the accuracy and stability of the diagnostic model face severe challenges due to the extremely limited fault data. Data augmentation methods have the capability to increase both the quantity and diversity of data without altering the key characteristics of the original data, which is particularly important for the development of intelligent fault diagnosis of rotating machinery under limited data conditions (IFD-RM-LDC). Despite the abundant achievements in research on data augmentation methods, there is a lack of systematic reviews and clear future development directions. Therefore, this paper systematically reviews and discusses data augmentation methods for IFD-RM-LDC. Firstly, existing data augmentation methods are categorized into three groups: synthetic minority over-sampling technique (SMOTE)-based methods, generative model-based methods, and data transformation-based methods. Then, these three methods are introduced in detail and discussed in depth: SMOTE-based methods synthesize new samples through a spatial interpolation strategy; generative model-based methods generate new samples according to the distribution characteristics of existing samples; data transformation-based methods generate new samples through a series of transformation operations. Finally, the challenges faced by current data augmentation methods, including their limitations in generalization, real-time performance, and interpretability, as well as the absence of robust evaluation metrics for generated samples, have been summarized, and potential solutions to address these issues have been explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小苹果汤完成签到,获得积分10
刚刚
刚刚
jiajia发布了新的文献求助10
1秒前
hututu完成签到,获得积分10
1秒前
1秒前
五岳三鸟完成签到,获得积分10
2秒前
zzb完成签到,获得积分10
2秒前
鉨汏闫完成签到,获得积分10
2秒前
小牛同志完成签到,获得积分10
3秒前
3秒前
豆豆龙关注了科研通微信公众号
3秒前
风趣的小鸽子完成签到,获得积分10
3秒前
嘉芮完成签到,获得积分10
3秒前
Mastertry发布了新的文献求助10
4秒前
巫马沛春完成签到,获得积分10
4秒前
sanages发布了新的文献求助10
5秒前
pcf完成签到,获得积分10
5秒前
jiajia完成签到,获得积分10
7秒前
qinswzaiyu完成签到,获得积分10
7秒前
桐桐应助无辜乘云采纳,获得10
9秒前
9秒前
Li完成签到,获得积分10
10秒前
刘大可完成签到,获得积分10
10秒前
h1352216完成签到,获得积分10
10秒前
李爱国应助jiajia采纳,获得30
10秒前
祖逸凡完成签到,获得积分10
11秒前
12秒前
饱饱完成签到,获得积分10
13秒前
qiu完成签到,获得积分10
14秒前
14秒前
易方完成签到,获得积分10
14秒前
墨尘发布了新的文献求助30
14秒前
Ankher应助zz0429采纳,获得100
15秒前
冰激凌完成签到,获得积分10
15秒前
欣慰扬完成签到,获得积分20
16秒前
luo完成签到,获得积分10
16秒前
16秒前
杨yyyy完成签到,获得积分10
16秒前
16秒前
鸢翔flybird发布了新的文献求助10
18秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Electrolytes, Interfaces and Interphases 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376720
关于积分的说明 10494415
捐赠科研通 3096112
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820189
科研通“疑难数据库(出版商)”最低求助积分说明 771885