作者
Xianwen Hu,X. Li,Pan Wang,Jiong Cai
摘要
Purpose Fibroblast activating protein is a promising target for tumor molecular imaging and therapy. Studies showed that fibroblast activating protein inhibitor (FAPI) radioactive tracers presented superiority over 18F-FDG PET/CT in the evaluation of various cancer types, including pancreatic cancer (PC). Therefore, we conducted this meta-analysis to evaluate and analyze the differences between 68Ga/18F-FAPI and 18F-FDG in PC, in order to provide evidence for the clinical application of FAPI PET imaging. Methods In the current meta-analysis, original studies published as of January 1, 2024 were analyzed using radiolabeled FAPI as a diagnostic radioactive tracer and compared to 18F-FDG for PET in PC. Databases searched included pubmed and web of science, and subject headings searched included PC and FAPI. The quality of the enrolled studies was evaluated by Quality Assessment of Diagnostic Accuracy Studies 2, and the meta-analysis was conducted using R language. Results A total of seven studies including 322 patients compared the diagnostic performance of FAPI PET imaging and 18F-FDG PET/CT in PC. Overall, FAPI PET imaging showed higher pooled sensitivity (0.99 [95% CI: 0.97–1.00] vs. 0.84 [95% CI: 0.70–0.92]) and area under the curve (0.99 [95% CI: 0.98–1.00] vs. 0.91 [95% CI: 0.88–0.93]) than 18F-FDG PET/CT. The evidence showed that FAPI PET imaging is superior to 18F-FDG in pooled sensitivity to primary tumor, lymph node metastasis, and distant metastasis. Moreover, FAPI PET imaging improved TNM staging in 25% of PC patients and changed clinical management in 11.7% of PC patients compared to 18F-FDG. Conclusion FAPI PET imaging is superior to that of 18F-FDG in the detection of primary PC, nodal and distant metastases, TNM staging and clinical management. Fibroblast activating protein is a promising target for tumor molecular imaging and therapy. Studies showed that fibroblast activating protein inhibitor (FAPI) radioactive tracers presented superiority over 18F-FDG PET/CT in the evaluation of various cancer types, including pancreatic cancer (PC). Therefore, we conducted this meta-analysis to evaluate and analyze the differences between 68Ga/18F-FAPI and 18F-FDG in PC, in order to provide evidence for the clinical application of FAPI PET imaging. In the current meta-analysis, original studies published as of January 1, 2024 were analyzed using radiolabeled FAPI as a diagnostic radioactive tracer and compared to 18F-FDG for PET in PC. Databases searched included pubmed and web of science, and subject headings searched included PC and FAPI. The quality of the enrolled studies was evaluated by Quality Assessment of Diagnostic Accuracy Studies 2, and the meta-analysis was conducted using R language. A total of seven studies including 322 patients compared the diagnostic performance of FAPI PET imaging and 18F-FDG PET/CT in PC. Overall, FAPI PET imaging showed higher pooled sensitivity (0.99 [95% CI: 0.97–1.00] vs. 0.84 [95% CI: 0.70–0.92]) and area under the curve (0.99 [95% CI: 0.98–1.00] vs. 0.91 [95% CI: 0.88–0.93]) than 18F-FDG PET/CT. The evidence showed that FAPI PET imaging is superior to 18F-FDG in pooled sensitivity to primary tumor, lymph node metastasis, and distant metastasis. Moreover, FAPI PET imaging improved TNM staging in 25% of PC patients and changed clinical management in 11.7% of PC patients compared to 18F-FDG. FAPI PET imaging is superior to that of 18F-FDG in the detection of primary PC, nodal and distant metastases, TNM staging and clinical management.