Generalized super-resolution 4D Flow MRI - using ensemble learning to extend across the cardiovascular system

计算机科学 人工智能 磁共振成像 放射科 医学
作者
L. E. Ericsson,Adam Hjalmarsson,Muhammad Usman Akbar,Edward Ferdian,Mia Bonini,B. Carmon Hardy,Jonas Schollenberger,Maria Aristova,Patrick Winter,Nicholas S. Burris,Alexander Fyrdahl,Andreas Sigfridsson,Susanne Schnell,C. Alberto Figueroa,David Nordsletten,Alistair A. Young,David Larsson
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3429291
摘要

4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was therefore to explore the generalizability of SR 4D Flow MRI using a combination of existing super-resolution base models, novel heterogeneous training sets, and dedicated ensemble learning techniques; the latter-most being effectively used for improved domain adaption in other domains or modalities, however, with no previous exploration in the setting of 4D Flow MRI. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with the novel use of ensemble learning in the setting of advanced fullfield flow imaging extending utility across various clinical areas of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234567发布了新的文献求助10
刚刚
善学以致用应助123采纳,获得10
1秒前
2224270676完成签到,获得积分10
2秒前
2秒前
向日葵发布了新的文献求助10
3秒前
余健完成签到,获得积分10
3秒前
YSY发布了新的文献求助10
3秒前
迷人听双完成签到,获得积分20
3秒前
Ava应助雨中尘埃采纳,获得10
4秒前
4秒前
orixero应助贺万万采纳,获得10
5秒前
5秒前
5秒前
liu_完成签到,获得积分20
7秒前
8秒前
科研通AI5应助yanzu采纳,获得10
9秒前
9秒前
欣喜灯泡完成签到,获得积分10
10秒前
动漫大师发布了新的文献求助10
10秒前
12秒前
12秒前
14秒前
桐桐应助1234567采纳,获得10
15秒前
念想完成签到,获得积分10
15秒前
wxx发布了新的文献求助10
16秒前
Nichols完成签到,获得积分10
17秒前
今后应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
积极鸵鸟完成签到 ,获得积分10
18秒前
阮敏敏发布了新的文献求助10
19秒前
ding应助无心的紫山采纳,获得10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797577
求助须知:如何正确求助?哪些是违规求助? 3342959
关于积分的说明 10314242
捐赠科研通 3059647
什么是DOI,文献DOI怎么找? 1679045
邀请新用户注册赠送积分活动 806307
科研通“疑难数据库(出版商)”最低求助积分说明 763093