Developing large language models to detect adverse drug events in posts on x

药品 不利影响 计算机科学 医学 重症监护医学 自然语言处理 药理学
作者
Yu Deng,Yunzhao Xing,Jason Quach,Xiaotian Chen,Xiaoqiang Wu,Yafei Zhang,Charlotte Moureaud,Mengjia Yu,Yujie Zhao,Li Wang,Sheng Zhong
出处
期刊:Journal of Biopharmaceutical Statistics [Taylor & Francis]
卷期号:: 1-12
标识
DOI:10.1080/10543406.2024.2403442
摘要

Adverse drug events (ADEs) are one of the major causes of hospital admissions and are associated with increased morbidity and mortality. Post-marketing ADE identification is one of the most important phases of drug safety surveillance. Traditionally, data sources for post-marketing surveillance mainly come from spontaneous reporting system such as the Food and Drug Administration Adverse Event Reporting System (FAERS). Social media data such as posts on X (formerly Twitter) contain rich patient and medication information and could potentially accelerate drug surveillance research. However, ADE information in social media data is usually locked in the text, making it difficult to be employed by traditional statistical approaches. In recent years, large language models (LLMs) have shown promise in many natural language processing tasks. In this study, we developed several LLMs to perform ADE classification on X data. We fine-tuned various LLMs including BERT-base, Bio_ClinicalBERT, RoBERTa, and RoBERTa-large. We also experimented ChatGPT few-shot prompting and ChatGPT fine-tuned on the whole training data. We then evaluated the model performance based on sensitivity, specificity, negative predictive value, positive predictive value, accuracy, F1-measure, and area under the ROC curve. Our results showed that RoBERTa-large achieved the best F1-measure (0.8) among all models followed by ChatGPT fine-tuned model with F1-measure of 0.75. Our feature importance analysis based on 1200 random samples and RoBERTa-Large showed the most important features are as follows: "withdrawals"/"withdrawal", "dry", "dealing", "mouth", and "paralysis". The good model performance and clinically relevant features show the potential of LLMs in augmenting ADE detection for post-marketing drug safety surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩寒完成签到 ,获得积分10
5秒前
9秒前
米博士完成签到,获得积分10
12秒前
小萝卜123发布了新的文献求助10
13秒前
heija完成签到,获得积分10
15秒前
飞飞鱼完成签到 ,获得积分10
16秒前
16秒前
dd完成签到,获得积分10
19秒前
小人物完成签到 ,获得积分10
19秒前
XRWei完成签到 ,获得积分10
19秒前
JOJO完成签到,获得积分10
20秒前
宝玉完成签到 ,获得积分10
23秒前
老牛完成签到,获得积分10
23秒前
小叶子完成签到 ,获得积分10
24秒前
24秒前
Antonio完成签到 ,获得积分10
25秒前
匆匆赶路人完成签到 ,获得积分10
28秒前
丝丢皮得完成签到 ,获得积分10
30秒前
楚江南完成签到,获得积分10
30秒前
小六九完成签到 ,获得积分10
30秒前
ZHDNCG完成签到,获得积分10
31秒前
丝丢皮的完成签到 ,获得积分10
35秒前
为你等候完成签到,获得积分10
36秒前
JasVe完成签到 ,获得积分10
36秒前
37秒前
舒服的觅夏完成签到,获得积分20
37秒前
40秒前
旺大财完成签到 ,获得积分10
42秒前
Jeffrey完成签到,获得积分10
44秒前
CipherSage应助笑点低寒凡采纳,获得10
47秒前
fhz完成签到,获得积分10
47秒前
xy完成签到 ,获得积分10
48秒前
48秒前
JYX完成签到 ,获得积分10
49秒前
50秒前
ryan1300完成签到 ,获得积分10
50秒前
DrLuffy完成签到,获得积分10
50秒前
厚朴大师完成签到,获得积分10
56秒前
笑点低寒凡完成签到,获得积分10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301038
捐赠科研通 3057231
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626