亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing the accuracy of physics-informed neural networks for indoor airflow simulation with experimental data and Reynolds-averaged Navier–Stokes turbulence model

物理 湍流 雷诺平均Navier-Stokes方程 雷诺数 流量(数学) 机械 人工神经网络 统计物理学 雷诺应力 人工智能 计算机科学
作者
Chi Zhang,Chih‐Yung Wen,Jia Yuan,Yu-Hsuan Juan,Yee-Ting Lee,Zhengwei Chen,An-Shik Yang,Zhengtong Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (6) 被引量:5
标识
DOI:10.1063/5.0216394
摘要

Physics-informed neural network (PINN) has aroused broad interest among fluid simulation researchers in recent years, representing a novel paradigm in this area where governing differential equations are encoded to provide a hybrid physics-based and data-driven deep learning framework. However, the lack of enough validations on more complex flow problems has restricted further development and application of PINN. Our research applies the PINN to simulate a two-dimensional indoor turbulent airflow case to address the issue. Although it is still quite challenging for the PINN to reach an ideal accuracy for the problem through a single purely physics-driven training, our research finds that the PINN prediction accuracy can be significantly improved by exploiting its ability to assimilate high-fidelity data during training, by which the prediction accuracy of PINN is enhanced by 53.2% for pressure, 34.6% for horizontal velocity, and 40.4% for vertical velocity, respectively. Meanwhile, the influence of data points number is also studied, which suggests a balance between prediction accuracy and data acquisition cost can be reached. Last but not least, applying Reynolds-averaged Navier–Stokes (RANS) equations and turbulence model has also been proved to improve prediction accuracy remarkably. After embedding the standard k–ε model to the PINN, the prediction accuracy was enhanced by 82.9% for pressure, 59.4% for horizontal velocity, and 70.5% for vertical velocity, respectively. These results suggest a promising step toward applications of PINN to more complex flow configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
John完成签到,获得积分10
54秒前
MchemG应助John采纳,获得30
1分钟前
寒冷的如之完成签到 ,获得积分10
1分钟前
云朵完成签到 ,获得积分10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
沐熙发布了新的文献求助10
2分钟前
emchavezangel完成签到,获得积分10
2分钟前
SYLH应助emchavezangel采纳,获得10
2分钟前
香蕉觅云应助洒脱鲲采纳,获得10
2分钟前
Ocean完成签到,获得积分10
2分钟前
沐熙发布了新的文献求助10
2分钟前
高兴凝安完成签到 ,获得积分10
2分钟前
liuliu0801完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
沐熙完成签到,获得积分10
3分钟前
3分钟前
沐熙发布了新的文献求助10
3分钟前
3分钟前
北风完成签到,获得积分10
3分钟前
水的很厉害完成签到,获得积分10
3分钟前
月儿完成签到 ,获得积分10
3分钟前
阔达的非笑完成签到 ,获得积分10
3分钟前
小马甲应助Silence采纳,获得10
4分钟前
4分钟前
ddeqbbw完成签到,获得积分10
4分钟前
Silence发布了新的文献求助10
4分钟前
沐熙发布了新的文献求助10
4分钟前
4分钟前
在水一方应助狮子采纳,获得10
4分钟前
小马甲应助谦让的西装采纳,获得10
5分钟前
6分钟前
6分钟前
狮子发布了新的文献求助10
6分钟前
猜不猜不完成签到 ,获得积分10
6分钟前
狮子发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833819
求助须知:如何正确求助?哪些是违规求助? 3376278
关于积分的说明 10492541
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842