MMLmiRLocNet: miRNA Subcellular Localization Prediction based on Multi-view Multi-label Learning for Drug Design

计算机科学 人工智能 机器学习 药品 模式识别(心理学) 数据挖掘 医学 药理学
作者
Tao Bai,Junxi Xie,Yumeng Liu,Bin Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3483997
摘要

Identifying subcellular localization of microRNAs (miRNAs) is essential for comprehensive understanding of cellular function and has significant implications for drug design. In the past, several computational methods for miRNA subcellular localization is being used for uncovering multiple facets of RNA function to facilitate the biological applications. Unfortunately, most existing classification methods rely on a single sequencebased view, making the effective fusion of data from multiple heterogeneous networks a primary challenge. Inspired by multi-view multi-label learning strategy, we propose a computational method, named MMLmiRLocNet, for predicting the subcellular localizations of miRNAs. The MMLmiRLocNet predictor extracts multi-perspective sequence representations by analyzing lexical, syntactic, and semantic aspects of biological sequences. Specifically, it integrates lexical attributes derived from k-mer physicochemical profiles, syntactic characteristics obtained via word2vec embeddings, and semantic representations generated by pre-trained feature embeddings. Finally, module for extracting multi-view consensus-level features and specific-level features was constructed to capture consensus and specific features from various perspectives. The full connection networks are utilized as the output module to predict the miRNA subcellular localization. Experimental results suggest that MMLmiRLocNet outperforms existing methods in terms of F1, subACC, and Accuracy, and achieves best performance with the help of multi-view consensus features and specific features extract network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助瘦瘦思天采纳,获得10
1秒前
wxsmy完成签到,获得积分10
2秒前
2秒前
想龙空发布了新的文献求助10
2秒前
2秒前
BZPL发布了新的文献求助10
2秒前
3秒前
田安平发布了新的文献求助10
3秒前
ZHANG_Kun发布了新的文献求助10
4秒前
wml应助王鑫采纳,获得10
4秒前
共享精神应助ccm采纳,获得10
4秒前
小二郎应助zzzlx采纳,获得10
5秒前
fafafa完成签到,获得积分10
5秒前
lu发布了新的文献求助10
5秒前
5秒前
meili完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
肖肖完成签到,获得积分10
6秒前
shiwo110完成签到,获得积分10
6秒前
戴帽子的花盆完成签到,获得积分10
6秒前
6秒前
科研大大完成签到 ,获得积分10
7秒前
MrHua完成签到,获得积分10
7秒前
沈惠映发布了新的文献求助10
7秒前
8秒前
高高乐天发布了新的文献求助10
8秒前
我是老大应助SevenKing采纳,获得10
8秒前
9秒前
9秒前
慕青应助宁宁宁采纳,获得10
9秒前
星辰大海应助Zcz采纳,获得10
10秒前
思源应助pbj采纳,获得10
10秒前
10秒前
Owen应助端庄威采纳,获得30
11秒前
传统的白竹完成签到,获得积分10
11秒前
12秒前
1111发布了新的文献求助10
13秒前
13秒前
damitang发布了新的文献求助10
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154634
求助须知:如何正确求助?哪些是违规求助? 4350313
关于积分的说明 13545065
捐赠科研通 4193152
什么是DOI,文献DOI怎么找? 2299764
邀请新用户注册赠送积分活动 1299749
关于科研通互助平台的介绍 1244797