已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast Tailings Pond Mapping Exploiting Large Scene Remote Sensing Images by Coupling Scene Classification and Sematic Segmentation Models

尾矿 分割 计算机科学 遥感 人工智能 特征提取 尾矿坝 图像分割 计算机视觉 模式识别(心理学) 地质学 冶金 材料科学
作者
Pan Wang,Hengqian Zhao,Zihan Yang,Qian Jin,Yanhua Wu,Pengjiu Xia,Lingxuan Meng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 327-327 被引量:3
标识
DOI:10.3390/rs15020327
摘要

In the process of extracting tailings ponds from large scene remote sensing images, semantic segmentation models usually perform calculations on all small-size remote sensing images segmented by the sliding window method. However, some of these small-size remote sensing images do not have tailings ponds, and their calculations not only affect the model accuracy, but also affect the model speed. For this problem, we proposed a fast tailings pond extraction method (Scene-Classification-Sematic-Segmentation, SC-SS) that couples scene classification and semantic segmentation models. The method can map tailings ponds rapidly and accurately in large scene remote sensing images. There were two parts in the method: a scene classification model, and a semantic segmentation model. Among them, the scene classification model adopted the lightweight network MobileNetv2. With the help of this network, the scenes containing tailings ponds can be quickly screened out from the large scene remote sensing images, and the interference of scenes without tailings ponds can be reduced. The semantic segmentation model used the U-Net model to finely segment objects from the tailings pond scenes. In addition, the encoder of the U-Net model was replaced by the VGG16 network with stronger feature extraction ability, which improves the model’s accuracy. In this paper, the Google Earth images of Luanping County were used to create the tailings pond scene classification dataset and tailings pond semantic segmentation dataset, and based on these datasets, the training and testing of models were completed. According to the experimental results, the extraction accuracy (Intersection Over Union, IOU) of the SC-SS model was 93.48%. The extraction accuracy of IOU was 15.12% higher than the U-Net model, while the extraction time was shortened by 35.72%. This research is of great importance to the remote sensing dynamic observation of tailings ponds on a large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
babaoriley1发布了新的文献求助10
1秒前
gao完成签到,获得积分10
3秒前
one完成签到,获得积分20
4秒前
闪闪小小完成签到 ,获得积分10
6秒前
wxl完成签到 ,获得积分10
7秒前
耶?发布了新的文献求助10
11秒前
SYLH应助魏伯安采纳,获得10
12秒前
LabRat完成签到 ,获得积分10
13秒前
小丸子发布了新的文献求助10
15秒前
shinysparrow应助LR采纳,获得150
16秒前
领导范儿应助夜行采纳,获得10
19秒前
雨林完成签到,获得积分10
20秒前
21秒前
耶?完成签到,获得积分10
21秒前
内向南风完成签到 ,获得积分10
21秒前
Ava应助爱听歌笑寒采纳,获得10
24秒前
24秒前
tianxiong发布了新的文献求助10
24秒前
28秒前
Hello应助榴下晨光采纳,获得10
29秒前
一一应助猪猪hero采纳,获得10
29秒前
xr完成签到 ,获得积分10
30秒前
31秒前
大媛大靳吃地瓜完成签到,获得积分10
32秒前
小眼儿完成签到 ,获得积分10
33秒前
34秒前
35秒前
xuan发布了新的文献求助10
36秒前
火翟丰丰山心完成签到,获得积分10
36秒前
刺五加发布了新的文献求助10
37秒前
飞逝的快乐时光完成签到 ,获得积分10
37秒前
37秒前
Frenda完成签到,获得积分20
37秒前
38秒前
不懈奋进应助科研通管家采纳,获得30
38秒前
斯文败类应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
38秒前
我就是我完成签到,获得积分10
38秒前
kk完成签到,获得积分10
38秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369359
关于积分的说明 10455705
捐赠科研通 3089006
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817411
科研通“疑难数据库(出版商)”最低求助积分说明 770217