Classification of three types of ginseng samples based on ginsenoside profiles: appropriate data normalization improves the efficiency of multivariate analysis

人参 人参皂甙 规范化(社会学) 化学 多元分析 传统医学 数学 医学 统计 替代医学 病理 社会学 人类学
作者
Yahui Li,Bingkun Yang,Wei Guo,Panpan Zhang,Jianghua Zhang,Jing Zhao,Qiao Wang,Wei Zhang,Xiaowei Zhang,Dezhi Kong
出处
期刊:Heliyon [Elsevier BV]
卷期号:8 (12): e12044-e12044 被引量:2
标识
DOI:10.1016/j.heliyon.2022.e12044
摘要

BackgroundIt is well known that ginsenosides are the main active ingredients in ginseng, and they have also been important indexes for assessing the quality of ginseng. However, the absolute contents of ginsenosides in ginseng were shown to be varied with the origin, cultivated type, cultivated year and climate. It is a great challenge to distinguish the commercial types of ginsengs according to the content of one or several ginsenosides.MethodsThe common commercial types of ginsengs are white ginseng (WG), red ginseng (RG), American ginseng (AG). To clearly illustrate the differences among WG, RG and AG at the ginsenosides level, we established a strategy for the detection and identification of ginsenosides based on an optimized LC-Q-Orbitrap MS/MS method coupled with an in-house database of ginsenosides. Before and after the normalization, the ginsenosides datasheet was analyzed and compared using several state-of-the-art multivariate statistical analysis methods.ResultsHere, 81 ginsenosides were identified in different ginseng samples. The majority of the ginsenosides (59 in 81) were all shared by WG, RG and AG. When the shared ginsenosides datasheet was normalized by the level of ginsenoside Ro, our analysis strategy clearly divided the ginseng samples into three groups (i.e., WG, RG and AG groups). We found that the ginsenoside profiles in RG and WG were significantly different from those in AG. The potential markers and multivariate diagnostic models differentiating the three types of ginsengs were also indicated.ConclusionOur novel methodology based on ginsenoside profiles is more robust than existing methods, and data normalization is required to improve the efficiency of multivariate statistical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
ifast完成签到 ,获得积分10
4秒前
科研通AI5应助iwhsgfes采纳,获得10
4秒前
阿尔法贝塔完成签到 ,获得积分10
5秒前
6秒前
yduan完成签到,获得积分20
6秒前
852应助小也采纳,获得10
6秒前
完美世界应助vivia采纳,获得10
8秒前
9秒前
Chem34发布了新的文献求助10
12秒前
乐乐应助一起采纳,获得10
12秒前
pjxxx完成签到 ,获得积分10
13秒前
imlarry发布了新的文献求助10
14秒前
So完成签到 ,获得积分10
19秒前
89757发布了新的文献求助10
19秒前
fffffffffffffff完成签到 ,获得积分10
23秒前
imlarry完成签到,获得积分10
24秒前
26秒前
rrrrroxie发布了新的文献求助10
32秒前
anny.white完成签到,获得积分10
35秒前
乐乐应助小鼠鼠的小狐狸采纳,获得30
35秒前
36秒前
搜集达人应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
JamesPei应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
41秒前
情怀应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
41秒前
41秒前
动漫大师发布了新的文献求助10
42秒前
fishhh发布了新的文献求助10
42秒前
43秒前
44秒前
细心书蕾完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385