Classification of three types of ginseng samples based on ginsenoside profiles: appropriate data normalization improves the efficiency of multivariate analysis

人参 人参皂甙 规范化(社会学) 化学 多元分析 传统医学 数学 医学 统计 替代医学 病理 社会学 人类学
作者
Yahui Li,Bingkun Yang,Wei Guo,Panpan Zhang,Jianghua Zhang,Jing Zhao,Qiao Wang,Wei Zhang,Xiaowei Zhang,Dezhi Kong
出处
期刊:Heliyon [Elsevier BV]
卷期号:8 (12): e12044-e12044 被引量:2
标识
DOI:10.1016/j.heliyon.2022.e12044
摘要

BackgroundIt is well known that ginsenosides are the main active ingredients in ginseng, and they have also been important indexes for assessing the quality of ginseng. However, the absolute contents of ginsenosides in ginseng were shown to be varied with the origin, cultivated type, cultivated year and climate. It is a great challenge to distinguish the commercial types of ginsengs according to the content of one or several ginsenosides.MethodsThe common commercial types of ginsengs are white ginseng (WG), red ginseng (RG), American ginseng (AG). To clearly illustrate the differences among WG, RG and AG at the ginsenosides level, we established a strategy for the detection and identification of ginsenosides based on an optimized LC-Q-Orbitrap MS/MS method coupled with an in-house database of ginsenosides. Before and after the normalization, the ginsenosides datasheet was analyzed and compared using several state-of-the-art multivariate statistical analysis methods.ResultsHere, 81 ginsenosides were identified in different ginseng samples. The majority of the ginsenosides (59 in 81) were all shared by WG, RG and AG. When the shared ginsenosides datasheet was normalized by the level of ginsenoside Ro, our analysis strategy clearly divided the ginseng samples into three groups (i.e., WG, RG and AG groups). We found that the ginsenoside profiles in RG and WG were significantly different from those in AG. The potential markers and multivariate diagnostic models differentiating the three types of ginsengs were also indicated.ConclusionOur novel methodology based on ginsenoside profiles is more robust than existing methods, and data normalization is required to improve the efficiency of multivariate statistical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助zzc采纳,获得10
1秒前
1秒前
xiuxiuxiu发布了新的文献求助10
2秒前
2秒前
Hmc完成签到 ,获得积分10
4秒前
TeeteePor完成签到,获得积分10
5秒前
fordream完成签到,获得积分10
5秒前
7秒前
今天进步了吗完成签到,获得积分10
7秒前
uniquedl完成签到 ,获得积分10
7秒前
7秒前
犹豫新梅发布了新的文献求助10
7秒前
专一的善愁完成签到,获得积分10
8秒前
9秒前
深情安青应助哲000采纳,获得10
9秒前
果实发布了新的文献求助10
11秒前
弱势主义接班人完成签到,获得积分10
11秒前
13秒前
公司账号2发布了新的文献求助10
14秒前
shuai发布了新的文献求助10
14秒前
来瓶养乐多完成签到,获得积分10
15秒前
魔幻一笑发布了新的文献求助30
15秒前
zhouya123发布了新的文献求助30
15秒前
Orange应助heartbeat采纳,获得10
15秒前
16秒前
王小磊完成签到,获得积分10
16秒前
梓亮发布了新的文献求助50
17秒前
小四完成签到,获得积分10
19秒前
20秒前
脑洞疼应助醒醒采纳,获得10
20秒前
今天发布了新的文献求助10
21秒前
犹豫新梅完成签到,获得积分10
21秒前
yys完成签到 ,获得积分10
22秒前
江屿完成签到,获得积分10
22秒前
英俊的铭应助大气修杰采纳,获得10
23秒前
等风来完成签到,获得积分10
24秒前
瘦瘦凌丝完成签到 ,获得积分10
26秒前
27秒前
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914834
求助须知:如何正确求助?哪些是违规求助? 3460141
关于积分的说明 10910101
捐赠科研通 3186961
什么是DOI,文献DOI怎么找? 1761639
邀请新用户注册赠送积分活动 852220
科研通“疑难数据库(出版商)”最低求助积分说明 793226