Bioinspired Three-Dimensional Nanoporous Membranes for Salinity-Gradient Energy Harvesting

反向电渗析 渗透力 纳米孔 电渗析 纳米技术 浓差极化 材料科学 可再生能源 工艺工程 化学 工程类 电气工程 正渗透 反渗透 生物化学
作者
Jian Wang,Yahong Zhou,Lei Jiang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (1): 86-100 被引量:7
标识
DOI:10.1021/accountsmr.2c00210
摘要

ConspectusSalinity-gradient energy represents a widespread, clean, environmentally friendly, and sustainable source of renewable energy, which has attracted great attention in the past years. To harness this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to develop efficient and low-cost approaches and materials for energy conversion. Conventional reverse electrodialysis (RED) systems are generally based on ion-exchange membranes, which usually suffer from ineffective mass transport, high membrane resistance, limited pore size, and concentration polarization, resulting in low output power density and poor energy-conversion efficiency. As one promising material, nanofluidic channels with their unique transport properties, which can be attributed to nanoconfinement effect, enable high-performance reverse electrodialysis to efficiently harvest salinity-gradient energy. Due to the unique porous architectures, three-dimensional (3D) nanoporous membranes demonstrate great potential for harvesting salinity-gradient power. It is generally known that the porous membranes can be prepared by many methods; however, there are some shortcomings such as high costs, poor ion conductance, and fragility limiting the practical application. Several simple and versatile approaches to low-cost fabrication of 3D nanoporous membranes have been developed in recent years. For example, self-assembly provides an effective route of constructing functional materials and organizing them into 3D architectures. In this Account, we mainly review our recent progress in the design and fabrication of bioinspired 3D nanoporous membranes for salinity-gradient energy harvesting. First, we give a brief introduction to bioinspired nanochannel membranes (BNMs) with diverse structural dimensions, and nanofluidic channel membranes may lead to technological breakthroughs and thus act as an emerging platform for harvesting salinity-gradient energy. Subsequently, we discuss the typical preparation approaches for bioinspired 3D nanoporous membranes. To tackle the bottlenecks of the conventional membrane-based power generator and extrapolate single-channel devices to macroscopic materials, our group have developed a series of 3D nanoporous membranes for power generation via various simple and versatile methods. We highlight the design and fabrication of several types of 3D nanoporous membranes, i.e., heterogeneous and homogeneous membranes, with tunable surface charge and porosity. The proof-of-concept demonstration of bioinspired 3D porous membranes shows that these nanofluidic platforms have the potential to overcome the selectivity-permeability trade-off and have impressive osmotic-energy-harvesting performance. Specifically, the scale-up Janus 3D porous membranes maintained high selectivity and rectified current in a hypersaline environment, which benefitted effective energy conversion and high output power density when seawater and river water were mixed. Finally, we give an outlook for future challenges and perspectives on the development of 3D nanofluidics for salinity-gradient energy conversion. We expect that this Account will spark further efforts on the development of bioinspired 3D nanoporous membranes for large-scale (typical side length of more than 10 cm) energy conversion and new opportunities for the applications in water desalination, dialysis, and ionic circuitries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助小桑桑采纳,获得10
1秒前
喝可乐的萝卜兔完成签到 ,获得积分10
1秒前
赘婿应助安和桥采纳,获得10
1秒前
解洙完成签到,获得积分10
1秒前
更深的蓝发布了新的文献求助10
1秒前
2秒前
yy完成签到 ,获得积分10
3秒前
gxpjzbg完成签到,获得积分10
3秒前
缥缈完成签到,获得积分10
3秒前
李连杰举报求助违规成功
5秒前
加菲丰丰举报求助违规成功
5秒前
紫金大萝卜举报求助违规成功
5秒前
5秒前
小谷完成签到,获得积分20
5秒前
向晚完成签到,获得积分10
5秒前
小玲仔发布了新的文献求助10
6秒前
蝶鞍完成签到,获得积分10
6秒前
糊涂涂完成签到 ,获得积分10
6秒前
7秒前
7秒前
bunny完成签到,获得积分10
8秒前
8秒前
9秒前
牙膏616完成签到,获得积分10
9秒前
尕辉完成签到,获得积分20
9秒前
大个应助顺利毕业采纳,获得10
10秒前
10秒前
10秒前
Zhen Wang完成签到,获得积分10
10秒前
11秒前
11秒前
lemshine完成签到,获得积分10
12秒前
西西完成签到 ,获得积分10
12秒前
顺利的无招完成签到,获得积分10
12秒前
闾丘志泽完成签到,获得积分10
12秒前
李连杰举报欢呼的小松鼠求助涉嫌违规
12秒前
研友_8QxayZ完成签到,获得积分10
12秒前
airyyak发布了新的文献求助10
13秒前
秋惜灵完成签到,获得积分10
13秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Aspect and Predication: The Semantics of Argument Structure 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2401842
求助须知:如何正确求助?哪些是违规求助? 2101283
关于积分的说明 5298710
捐赠科研通 1828869
什么是DOI,文献DOI怎么找? 911607
版权声明 560339
科研通“疑难数据库(出版商)”最低求助积分说明 487302