Thyroid region prior guided attention for ultrasound segmentation of thyroid nodules

分割 计算机科学 结核(地质) 甲状腺 人工智能 甲状腺结节 特征(语言学) 模式识别(心理学) 计算机视觉 医学 内科学 生物 语言学 哲学 古生物学
作者
Haifan Gong,Jiaxin Chen,Guanqi Chen,Haofeng Li,Guanbin Li,Fei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106389-106389 被引量:60
标识
DOI:10.1016/j.compbiomed.2022.106389
摘要

Ultrasound segmentation of thyroid nodules is a challenging task, which plays an vital role in the diagnosis of thyroid cancer. However, the following two factors limit the development of automatic thyroid nodule segmentation algorithms: (1) existing automatic nodule segmentation algorithms that directly apply semantic segmentation techniques can easily mistake non-thyroid areas as nodules, because of the lack of the thyroid gland region perception, the large number of similar areas in the ultrasonic images, and the inherently low contrast images; (2) the currently available dataset (i.e., DDTI) is small and collected from a single center, which violates the fact that thyroid ultrasound images are acquired from various devices in real-world situations. To overcome the lack of thyroid gland region prior knowledge, we design a thyroid region prior guided feature enhancement network (TRFE+) for accurate thyroid nodule segmentation. Specifically, (1) a novel multi-task learning framework that simultaneously learns the nodule size, gland position, and the nodule position is designed; (2) an adaptive gland region feature enhancement module is proposed to make full use of the thyroid gland prior knowledge; (3) a normalization approach with respect to the channel dimension is applied to alleviate the domain gap during the training process. To facilitate the development of thyroid nodule segmentation, we have contributed TN3K: an open-access dataset containing 3493 thyroid nodule images with high-quality nodule masks labeling from various devices and views. We perform a thorough evaluation based on the TN3K test set and DDTI to demonstrate the effectiveness of the proposed method. Code and data are available at https://github.com/haifangong/TRFE-Net-for-thyroid-nodule-segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
karL完成签到,获得积分10
2秒前
姒嵛完成签到 ,获得积分10
2秒前
陈年旧事发布了新的文献求助10
6秒前
小二郎应助黄金矿工采纳,获得10
7秒前
魔幻灯泡完成签到,获得积分10
9秒前
奋斗的雅柏完成签到,获得积分20
10秒前
Sunny完成签到,获得积分10
10秒前
木木SCI完成签到 ,获得积分10
10秒前
Xiaoxiao应助范_aaaaaa采纳,获得10
12秒前
机灵柚子应助昏睡的笑南采纳,获得10
13秒前
米奇的妙妙屋完成签到,获得积分10
13秒前
ding应助Joyi采纳,获得10
14秒前
CipherSage应助sjx00100采纳,获得10
14秒前
kiki完成签到 ,获得积分10
15秒前
天玄一刀完成签到,获得积分10
15秒前
和谐的果汁完成签到 ,获得积分10
16秒前
阔达的雁凡完成签到,获得积分10
16秒前
JamesPei应助ddd采纳,获得10
18秒前
Thomas完成签到,获得积分20
19秒前
光之战士完成签到 ,获得积分10
19秒前
sjx00100完成签到,获得积分10
23秒前
SYLH应助LaTeXer采纳,获得10
23秒前
妖孽的二狗完成签到 ,获得积分10
24秒前
FANG应助nn采纳,获得10
24秒前
25秒前
26秒前
26秒前
河豚不擦鞋完成签到 ,获得积分10
27秒前
灰鸽舞完成签到 ,获得积分10
28秒前
Handy完成签到,获得积分10
29秒前
Mark发布了新的文献求助10
30秒前
30秒前
白夜完成签到 ,获得积分10
30秒前
cdercder应助阔达的雁凡采纳,获得10
30秒前
京莫完成签到,获得积分10
30秒前
uss完成签到,获得积分10
31秒前
31秒前
32秒前
CodeCraft应助懦弱的龙猫采纳,获得30
32秒前
sjx00100发布了新的文献求助10
32秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790