Thyroid region prior guided attention for ultrasound segmentation of thyroid nodules

分割 计算机科学 结核(地质) 甲状腺 人工智能 甲状腺结节 特征(语言学) 模式识别(心理学) 计算机视觉 医学 内科学 生物 语言学 哲学 古生物学
作者
Haifan Gong,Jiaxin Chen,Guanqi Chen,Haofeng Li,Guanbin Li,Fei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106389-106389 被引量:132
标识
DOI:10.1016/j.compbiomed.2022.106389
摘要

Ultrasound segmentation of thyroid nodules is a challenging task, which plays an vital role in the diagnosis of thyroid cancer. However, the following two factors limit the development of automatic thyroid nodule segmentation algorithms: (1) existing automatic nodule segmentation algorithms that directly apply semantic segmentation techniques can easily mistake non-thyroid areas as nodules, because of the lack of the thyroid gland region perception, the large number of similar areas in the ultrasonic images, and the inherently low contrast images; (2) the currently available dataset (i.e., DDTI) is small and collected from a single center, which violates the fact that thyroid ultrasound images are acquired from various devices in real-world situations. To overcome the lack of thyroid gland region prior knowledge, we design a thyroid region prior guided feature enhancement network (TRFE+) for accurate thyroid nodule segmentation. Specifically, (1) a novel multi-task learning framework that simultaneously learns the nodule size, gland position, and the nodule position is designed; (2) an adaptive gland region feature enhancement module is proposed to make full use of the thyroid gland prior knowledge; (3) a normalization approach with respect to the channel dimension is applied to alleviate the domain gap during the training process. To facilitate the development of thyroid nodule segmentation, we have contributed TN3K: an open-access dataset containing 3493 thyroid nodule images with high-quality nodule masks labeling from various devices and views. We perform a thorough evaluation based on the TN3K test set and DDTI to demonstrate the effectiveness of the proposed method. Code and data are available at https://github.com/haifangong/TRFE-Net-for-thyroid-nodule-segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
情怀应助275891672采纳,获得10
2秒前
2秒前
2秒前
本恩宁发布了新的文献求助10
2秒前
JamesPei应助克莱采纳,获得10
4秒前
Akim应助克莱采纳,获得30
4秒前
4秒前
GuMingyang发布了新的文献求助10
5秒前
源源源完成签到 ,获得积分10
5秒前
cc发布了新的文献求助10
5秒前
小阳肖恩发布了新的文献求助10
6秒前
科研通AI6应助梼杌吞神采纳,获得10
6秒前
浅笑_随风完成签到,获得积分10
7秒前
8秒前
椰汁发布了新的文献求助10
8秒前
渡劫完成签到,获得积分10
8秒前
Lucas应助星空下的皮先生采纳,获得10
8秒前
zzzzz应助line采纳,获得10
9秒前
9秒前
9秒前
kang发布了新的文献求助10
10秒前
ddd发布了新的文献求助10
10秒前
小路发布了新的文献求助10
10秒前
manman完成签到,获得积分10
12秒前
13秒前
13秒前
zy发布了新的文献求助10
13秒前
仅此而已i完成签到,获得积分20
13秒前
sapphizure发布了新的文献求助30
14秒前
15秒前
拼搏菲鹰完成签到,获得积分10
15秒前
15秒前
Akim应助leosunnn采纳,获得10
15秒前
16秒前
仅此而已i发布了新的文献求助10
16秒前
123发布了新的文献求助30
17秒前
李思松完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497067
求助须知:如何正确求助?哪些是违规求助? 4594645
关于积分的说明 14445643
捐赠科研通 4527258
什么是DOI,文献DOI怎么找? 2480805
邀请新用户注册赠送积分活动 1465195
关于科研通互助平台的介绍 1437899