Fast artifact filtering algorithm for electrical resistivity tomography

工件(错误) 电阻抗断层成像 电阻率层析成像 算法 计算机科学 电容层析成像 断层摄影术 图像(数学) 电容 电阻率和电导率 计算机视觉 人工智能 电阻抗 电极 电气工程 工程类 化学 物理 光学 物理化学
作者
Siyuan Han,Guoqiang Yu,Wei Lü,Beichen Xue,Xiguang Gao,Yingdong Song
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (6): 065601-065601 被引量:2
标识
DOI:10.1088/1361-6501/acbc3c
摘要

Abstract Owing to the ill-conditioned nature of electrical resistivity tomography and the measurement error of the hardware equipment, the reconstructed resistivity distribution image often contains artifacts of varying degrees. Other soft-field imaging technologies, such as electrical impedance tomography and electrical capacitance tomography, also encounter artifacts. Artifacts interfere with the assessment of damaged areas. To eliminate the influence of artifacts on the reconstructed image, a novel artifact elimination algorithm called the fast artifact filtering (FAF) algorithm is proposed. Based on the calculation results of existing algorithms, such as the Newton’s one-step error reconstructor (NOSER) algorithm, the FAF algorithm can remove the damaged areas with low confidence from the potentially damaged areas and only retain the damaged areas with high confidence for final imaging. Several simulation models were used to test the effectiveness of the artifact elimination algorithm proposed in this study. The test results show that the number of artifacts in the final reconstructed image is significantly reduced after the NOSER algorithm is combined with the FAF algorithm. In addition, when the number of finite element model division elements was 4802, the refresh time of a single image increased by approximately 1 ms. A structural health monitoring test for hollow structure is provided. The results show that the FAF also performs well on the measured voltage data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DLY677完成签到,获得积分10
1秒前
热情发布了新的文献求助10
1秒前
2秒前
5秒前
zhaxiao完成签到,获得积分10
5秒前
jy完成签到,获得积分10
6秒前
7秒前
8秒前
zjh完成签到,获得积分10
9秒前
坚定的骁完成签到,获得积分10
9秒前
zhaxiao发布了新的文献求助10
9秒前
灵泽完成签到,获得积分10
9秒前
Akim应助123采纳,获得10
10秒前
10秒前
Wei发布了新的文献求助10
10秒前
沫沫完成签到 ,获得积分10
11秒前
星辰大海应助yeyongchang_hit采纳,获得10
11秒前
13秒前
13秒前
科研通AI5应助tang采纳,获得10
13秒前
Akim应助小美爱科研采纳,获得10
14秒前
菜小芽发布了新的文献求助10
14秒前
nemo发布了新的文献求助10
15秒前
今后应助愉快的宛儿采纳,获得10
15秒前
TonyLee完成签到,获得积分10
16秒前
充电宝应助rxl采纳,获得10
16秒前
16秒前
16秒前
wxqz完成签到,获得积分10
18秒前
19秒前
李西西完成签到,获得积分10
19秒前
20秒前
20秒前
Lemon发布了新的文献求助30
20秒前
21秒前
21秒前
缥缈月光发布了新的文献求助10
21秒前
任性的咖啡完成签到,获得积分10
21秒前
Vermouth完成签到,获得积分20
21秒前
AlexLee完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794759
求助须知:如何正确求助?哪些是违规求助? 3339605
关于积分的说明 10296669
捐赠科研通 3056347
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804963
科研通“疑难数据库(出版商)”最低求助积分说明 762244