A novel method to segment individual wire from bundle conductor using UAV-LiDAR point cloud data

捆绑 导电体 点云 计算机科学 导线 跨度(工程) 点(几何) 聚类分析 噪音(视频) 分割 软件 实时计算 模拟 人工智能 电子工程 工程类 电气工程 数学 材料科学 图像(数学) 结构工程 复合材料 程序设计语言 几何学
作者
Yueqian Shen,Ye Yang Data:,Jundi Jiang,Jinguo Wang,Junjun Huang,Vagner Ferreira
出处
期刊:Measurement [Elsevier BV]
卷期号:211: 112603-112603
标识
DOI:10.1016/j.measurement.2023.112603
摘要

Monitoring and managing the powerline corridors are essential in the electricity demand of our daily activities and productions. UAV-LiDAR is being used as a feasible technique for such tasks to reduce the amount of manual inspection of the powerline corridors. However, challenges in extracting powerlines using a large point cloud remain due to the various scenarios and unavoidable noise. In this work, a novel procedure to segment wires individually from bundle conductors automatically using the point cloud acquired by the UAV system is proposed. The scene is first voxelized, and the voxel-based heigh features are generated and utilized to rough detect the locations of the objects. The powerline span is determined using the adjacent pylons, and the corresponding powerlines are extracted. The powerlines are segmented to different bundle conductors using the connected-component analysis in one powerline span. Finally, the slicing procedure is implemented along the powerline span direction, and CFDP (clustering by fast search and find density peaks) algorithm is introduced to segment the individual wires from the entire bundle conductors. To solve the failure results caused by various density, the parameters used in the CFDP algorithm is optimized. This procedure was validated by comparing powerlines extracted manually using the CloudCompare software. For the uniform density bundle conductors, the quantitative assessment in terms of precision, recall, and F1-score are 98.17%, 96.60%, and 97.37%, respectively. The corresponding values for the nonuniform density bundle conductors are 95.25%, 88.03%, and 90.95%, respectively. Results of the proposed method are compared to k-means, DBSCAN, and spectral clustering, demonstrating the superiority of the effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CROWN完成签到,获得积分10
刚刚
禾下乘凉发布了新的文献求助10
刚刚
如意草丛发布了新的文献求助10
1秒前
我是老大应助hututu采纳,获得10
1秒前
1秒前
1秒前
淡然向松发布了新的文献求助10
1秒前
1秒前
1秒前
文献狗完成签到,获得积分10
2秒前
难过隶完成签到,获得积分20
2秒前
ccc完成签到,获得积分10
2秒前
CodeCraft应助潇洒映冬采纳,获得10
3秒前
今后应助小鱼丸采纳,获得10
3秒前
AK完成签到,获得积分10
3秒前
李爱国应助LLeaf采纳,获得30
3秒前
4秒前
passionate完成签到,获得积分10
4秒前
Qin应助伶俐绿柏采纳,获得10
4秒前
吃糖发布了新的文献求助10
5秒前
啦啦小牛发布了新的文献求助10
5秒前
5秒前
zyzhnu完成签到,获得积分10
5秒前
5秒前
goldenfleece完成签到,获得积分10
6秒前
Hello应助禾下乘凉采纳,获得10
6秒前
蟹蟹发布了新的文献求助10
7秒前
难过隶发布了新的文献求助10
7秒前
深情笑南完成签到,获得积分20
7秒前
柠檬九分酸完成签到,获得积分10
8秒前
淡然向松完成签到,获得积分10
8秒前
CarryZ8发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
9秒前
刘钱美子完成签到,获得积分10
9秒前
dreamdraver完成签到,获得积分10
10秒前
orange完成签到,获得积分10
11秒前
kk发布了新的文献求助10
12秒前
禾下乘凉完成签到,获得积分10
12秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792984
求助须知:如何正确求助?哪些是违规求助? 3337735
关于积分的说明 10286331
捐赠科研通 3054258
什么是DOI,文献DOI怎么找? 1675917
邀请新用户注册赠送积分活动 803905
科研通“疑难数据库(出版商)”最低求助积分说明 761598