原子间势
从头算
工作流程
从头算量子化学方法
计算机科学
超单元
对角线的
声子
过程(计算)
计算科学
算法
物理
分子动力学
凝聚态物理
量子力学
数据库
数学
几何学
操作系统
分子
雷达
电信
作者
Connor Allen,Albert P. Bartók
标识
DOI:10.1088/2632-2153/ac9ae7
摘要
Abstract Machine learning interatomic potentials (MLIPs) are routinely used atomic simulations, but generating databases of atomic configurations used in fitting these models is a laborious process, requiring significant computational and human effort. A computationally efficient method is presented to generate databases of atomic configurations that contain optimal information on the small-displacement regime of the potential energy surface of bulk crystalline matter. Utilising non-diagonal supercell (Lloyd-Williams and Monserrat 2015 Phys. Rev. B 92 184301), an automatic process is suggested for ab initio data generation. MLIPs were fitted for Al, W, Mg and Si, which very closely reproduce the ab initio phonon and elastic properties. The protocol can be easily adapted to other materials and can be inserted in the workflow of any flavour of MLIP generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI